
0

Dylan Walsh

ATTLEBOROUGH ACADEMY NORFOLK

NEA PROJECT – CHESS AI

Building a Chess AI

1

Table of Contents
Analysis ... 4

Proposed Project ... 4

Overview of the Project ... 4

User(s)/Client .. 4

Project Research .. 5

Project Requirements .. 13

Must .. 13

Should ... 13

Could ... 13

Won’t .. 14

Proposed Solution ... 14

Documented Design .. 14

Overall System Design ... 14

Inputs, Processes, Storage and Outputs ... 14

Design of Project Modules ... 17

AI Package ... 17

Database Package .. 17

Input Package .. 17

Entities Package ... 17

Screens Package .. 18

Utility Package ... 18

Game Class .. 18

Definition of Record Structure ... 19

The Move Stack ... 19

The Game Message Queue .. 19

Validating Input ... 19

Database Design .. 20

Data Dictionaries ... 20

Sample of Planned SQL Queries ... 22

Program Algorithms... 23

The MiniMax Algorithm ... 23

The MiniMax Algorithm with Alpha-Beta ... 24

The Evaluation Function... 24

2

Class Definitions and Diagrams .. 25

A Design of the User Interface ... 28

Technical Solution ... 29

Introduction .. 29

com.dylanwalsh.chessai... 29

com.dylanwalsh.chessai.ai ... 29

com.dylanwalsh.chessai.database.. 34

com.dylanwalsh.chessai.entities .. 39

com.dylanwalsh.chessai.input.. 51

com.dylanwalsh.chessai.screens .. 53

com.dylanwalsh.chessai.util ... 67

GameClass ... 70

Assets .. 71

chess_pieces .. 71

Hud ... 71

tiles ... 71

System Testing .. 72

Test Tables .. 72

Piece Functionality Tests .. 72

Other Tests .. 75

Screenshots ... 80

Screenshot 1.1 ... 80

Screenshot 1.2 ... 80

Screenshot 1.3 ... 80

Screenshot 1.4 ... 81

Screenshot 1.5 ... 81

Screenshot 1.6 ... 81

Screenshot 1.7 ... 82

Screenshot 1.8 ... 82

Screenshot 1.9 ... 83

Screenshot 2.0 ... 83

Screenshot 2.1 ... 84

Screenshot 2.2 ... 84

Screenshot 2.3 ... 85

3

Screenshot 2.4 ... 85

Screenshot 2.7 ... 85

Screenshot 2.8 ... 85

Screenshot 2.9 ... 86

Screenshot 3.0 ... 87

Screenshot 3.1 ... 87

Screenshot 3.2 ... 87

Screenshot 3.3 ... 88

Screenshot 3.4 ... 88

Screenshot 3.5 ... 88

Screenshot 3.6 ... 89

Screenshot 3.7 ... 89

Screenshot 3.8 ... 90

Screenshot 3.9 ... 90

Screenshot 4.0 ... 90

Screenshot 4.1 ... 90

Screenshot 4.2 ... 90

Screenshot 4.3 ... 90

Minimax Stats .. 91

2.5 ... 91

2.6 ... 93

Evaluation ... 95

Overview ... 95

Feedback ... 97

Ease of use .. 97

Improvements ... 98

4

Analysis

Proposed Project

Overview of the Project

Artificial Intelligence is a rapidly growing field. With a broad range of applications such as

autonomous road vehicles, Google’s search algorithms or IBM’s Watson, AI can come in many forms.

Generally, however, the different forms of AI can be broken down into two categories; narrow/weak

AI and general/strong AI. What we have today is what is properly known as narrow or weak AI. This

approach to AI research and development involves designing AI systems that simply act upon and

are bound to the rules imposed on it. This specialized type of AI is designed to perform very specific

tasks. An example of a weak AI could be video game characters who will only act according to the

rules defined for them by the programmer. Some other examples of weak AI could include Apple’s

Siri, a chess bot or an autonomous system designed to drive a car. A much more advances form of AI

called general or strong AI is a system designed to take a more general approach to solving

problems. Because of this, a general AI will be able to perform nearly any cognitive task as opposed

to a specific task. The field of AGI (Artificial General Intelligence) is aimed at building general-

purpose AI systems that can ‘Think’ and poses intelligence comparable to that of the human mind,

ultimately capable of experiencing consciousness. Because designing and building a system like this

is so complex, artificial general intelligence remains a primary goal of some artificial intelligence

research and a common topic for science fiction and future studies.

With this in mind, I have taken on the challenge of building a chess artificial intelligence that can

compete with a player/user. The chess AI will be able to determine the best possible next move for

any given board state and my designed algorithm for doing this will make use of the Minimax

algorithm. I hope to include three separate difficulties (easy, medium and hard) where each difficulty

comes progressively more difficult to beat. I intend to eventually include database compatibility so

that I could permanently store game information such as the sequence of moves made or the best

score for each difficulty.

User(s)/Client

My client is a friend of mine who has tasked me with creating a chess artificial intelligence. He will be

the user and owner of the software. After asking him a set of questions (detailed in the User

Requirements section) I have identified the various essential features of the project and what exactly

the client wants from the project.

5

Project Research

Having never taken on a project like this before, there is a lot of information that I don’t know and

designing the solution may be difficult without first researching into the problem. Here I intend to

gain a better understanding of what information I will need to figure out a solution. This will include

learning about potential algorithms I could use such as the MiniMax algorithm or other existing

solutions to my problem (similar systems) and how they work.

Research Table

What you need to
know

Source of information
(Who?)

Primary | Secondary Research Method

User Requirements Client/User Primary Interview – An
interview will be the
most appropriate
method to attain the
user requirements
from one person as it
will allow me to
respond to any
answers in a more
specific way, which
may lead me on to
further questions that
I didn’t think about
before.

Similar Systems
Analysis

 Primary Investigation – An
investigation into
various other similar
systems (other chess
games, chess engines)
and what I like and
dislike about each.

Research of
appropriate data
structures

 Secondary Website – I will
conduct some
research into the
various data
structures that can be
used throughout the
project and where
they would be
appropriate to use.
For example, search
trees, Queues, Stacks,
etc.

Research of AI
algorithms, the
MiniMax algorithm
and Alpha-beta
pruning

 Website – I will
research into the
various AI algorithms
that can be used in
the game of chess.
These include
MiniMax, search tree

6

algorithms and an
enhancement on the
MiniMax called Alpha-
beta pruning.

Research any game
languages, APIs I could
use.

 Secondary Website – A
Comparison of various
languages and an
evaluation of the most
appropriate for my
situation. Research
into which APIs I could
use with Java such as
JDBC.

Research appropriate
RDBMS to use in my
project.

 Secondary Website – Conduct
research into the
various RDBMS
available and evaluate
which one is most
suitable and why.

User Requirements

The interview I conducted with my client/user allowed me to get a better understanding of the user

requirements and what the client wanted from the software. Being in the form of an interview, I

could respond to each answer differently. For instance when the client told me he wanted game

information stored in the database, I was able to ask him what type of data he wanted saved.

The questions I have designed for my interview to identify my user requirements for the system are

as follows (I have detailed the answers also):

What features must be implemented in the final system?

A: I would like there to be a chessboard rendered on screen that the user can interact with, I

would also like the algorithm used to be the MiniMax algorithm using Alpha-Beta pruning. There

must also be information about the game stored in the database.

What type of information about the game would you like stored in the database?

A: I would like the move history of a game to be stored in the database and if so, the game can be

played back to the user. The database could also store the player’s highscore.

What other features could be implemented in the final system?

A: Extra features could include highlighted tiles when hovered over or selected, there could also

be a very simple main menu system. Not all chess rules need to be implemented.

Which chess rules therefore aren’t essential?

Castling and pawn en-passant.

What other features won’t be implemented in the final system?

A: The chessboard shouldn’t be rendered in 3D using 3D models.

7

What would the user interface look like?

A: The chessboard and all pieces should be rendered on screen and if so, information about the

captured pieces and elapsed time since the start of the game as well as the current score of the

player.

How will the user interact with the program?

A: A user should select a tile containing a piece and then select a tile to move that piece to. The

user shouldn’t drag and drop the chess piece.

Similar Systems Analysis

In order to better understand the problem I am trying to solve, I thought I would conduct some

analysis of other chess games and see which features would be appropriate for my project, which

features wouldn’t and which features I won’t be able to implement within reasonable time. To do

this, I researched various popular chess game engines online.

System Hardware Software Algorithms User Interface

The
Chessmaster
series

MS
Windows,
MS-DOS,
Game Boy,
PlayStation,
Xbox 360,
PlayStation
Portable,
PlayStation
2

- The
Chessmaster
chess engine
is called The
King written
by Johan de
Koning.

A screenshot of a game being played in
Chessmaster Grandmaster (above) and a
screenshot of the menu screen of
Chessmaster Grandmaster (below). I like
the simplistic design of this UI. In
addition to the chessboard, I would also
like to have a game HUD showing
elapsed time since the start of the game.

https://en.wikipedia.org/wiki/MS_Windows
https://en.wikipedia.org/wiki/MS_Windows
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Game_Boy
https://en.wikipedia.org/wiki/PlayStation_(console)
https://en.wikipedia.org/wiki/Xbox_360
https://en.wikipedia.org/wiki/PlayStation_Portable
https://en.wikipedia.org/wiki/PlayStation_Portable
https://en.wikipedia.org/wiki/PlayStation_2
https://en.wikipedia.org/wiki/PlayStation_2

8

Fritz Windows
Vista,
Windows
XP,
PlayStation
3,
Wii,
Nintendo
DS,
Windows
7,
Windows
10

- Since Fritz
15, the
games have
been using
Vasik
Rajlich’s
Rybka
engine.

This is the UI of a Fritz 15 chess game.
The 2D representation of the chess
board and chess pieces in this instance
are much closer to how I will render the
chess board in my game. However, I do
not like how the menu items, settings
and game statistics take up the majority
of the screen.

Pure Chess Windows,
PlayStation
3,
PlayStation
4,
PlayStation
Vita,
Nintendo
3DS,
Wii U,
IOS,
Android,
Xbox One

- -

With much more photorealistic 3D
rendered graphics, Pure Chess is geared
more towards producing better game
visuals with more natural gameplay
mechanics than Fritz and ChessMaster.
Though I wont be able to render the
chessboard in this way, I do like the way
the HUD is layed out on screen with the
transparent menu items, it isnt as
clustered as a Fritz 15 game.

Data Structures

I will be using a variety of data structures throughout this project. I intend to compare a few

common data structure and list appropriate uses for each, and where they would be useful in my

project. In my project, there will be a lot of data passed around, and representing that data and

organising it into the right structure will be essential. For instance, recording piece history would

involve the use of a stack when the item at the top of the stack is the most recently moved piece.

https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/Nintendo_DS
https://en.wikipedia.org/wiki/Nintendo_DS
https://en.wikipedia.org/wiki/Windows_7
https://en.wikipedia.org/wiki/Windows_7
https://en.wikipedia.org/wiki/Windows_10
https://en.wikipedia.org/wiki/Windows_10
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/PlayStation_4
https://en.wikipedia.org/wiki/PlayStation_4
https://en.wikipedia.org/wiki/PlayStation_Vita
https://en.wikipedia.org/wiki/PlayStation_Vita
https://en.wikipedia.org/wiki/Nintendo_3DS
https://en.wikipedia.org/wiki/Nintendo_3DS
https://en.wikipedia.org/wiki/Wii_U
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Xbox_One

9

Tree

A tree is an Abstract Data Type (ADT). It is a form of a non-linear data structure, meaning it doesn’t

have a definitive start and end like linear data structures do (Arrays, Queues, Linked Lists, etc.). In a

tree, data is stored in a hierarchy structure. It is a made up of a collection of entities called nodes

which are connected via edges. Each node will contain a data item and may or may not have a child

node. The top most node of a tree is called the root node and has no parents. It becomes a parent if

it is connected to a sub-node. The sub-node would be therefore be the child of the root node. Leaves

are the last nodes on a tree, they are nodes without children. A final important concept is height and

depth. The height of a node is the number of edges along the longest path between that node and a

leaf. The height of the tree is the height of the root node. The depth of a node is the sum of edges

from that node to the root node.

A useful implementation of a tree within my chess project could be in conjunction with the MiniMax

algorithm. The search tree will represent all possible moves to a given depth. The position to move

will be evaluated at the ending leaves of the tree.

Array

An array is an example of a linear data structure. It consists of a collection of elements (data values)

each individually accessed by an index. An array can be either one-dimensional or multidimensional.

A multidimensional array is an array containing one or more nested arrays. This can be useful when

wanting to represent a collection of data in the form of a grid. In my situation I could use a two

dimensional array to represent the chessboard. The array would contain 8 other nested arrays

representing the 8 rows of the board. The nested arrays will contain 8 objects representing the state

of each tile on that row (E.G. Pawn, Bishop, None).

[0] [1] [2] [3] [4] [5] [6] [7]

[0] BR Bk BB BQ BK BB Bk BR

[1] BP BP BP BP BP BP BP BP

[2]

[3]

10

[4]

[5]

[6] WP WP WP WP WP WP WP WP

[7] WR Wk WB WQ WK WB Wk WR

Queue

A queue is a form of linear structured abstract data type. It follows a particular order in which

operations should be performed. This order is known as First In First Out (FIFO). An analogy for a

queue data structure would be a queue of customers at a supermarket till. The first person to enter

the queue (the first data item) would be the first to leave the queue. This means the item to remove

from the queue would be the least recently added item.

There are four main operations that can be performed on a queue data structure:

Enqueue: Adds an item to the end of the queue, in the case that a queue is full, it is known as an

overflow condition.

Dequeue: Removes an item from the front of the queue, in the case that a queue is empty, it is

known as an underflow condition.

Front: Retrieve the front item of the queue

Rear: Retrieve the last item of the queue

Stack

A stack is another form of linear abstract data structure and is similar to a queue. Much like a stack

or pile in real life, items are removed and added to a stack from the top. Because of this, a stack is

known as a Last In First Out (LIFO) structure. There are 3 main operations that you can perform on a

stack:

Push: Insert an item to the top of the stack

Pop: Remove an item from the top of the stack

Pip: Display the contents of the stack

The MiniMax Algorithm

The most important aspect of my project will be move generation, which means having the AI

determine the best possible move given any state of the board. However, the problem with this is

that the number of states that a chessboard can be in is far too large to store. This means you

cannot pre-determine the relative value of any state of the board, rather you will have to measure

this value through the use of an evaluation function. This, is conjunction with the minimax algorithm

is what will allow the AI to figure out the best move to make.

11

The MiniMax algorithm is an algorithm used in decision making and game theory to find the most

optimal move for a player. It is mostly effective in two player turn based games such as chess, tic-

tac-toe, mancala, etc. In the MiniMax algorithm, the two players are called the maximizer and the

minimizer. Both aiming for opposite outcomes, the maximizer attempts to obtain the highest score

possible while the minimiser tries to obtain the lowest score possible.

Each state of the board will have a unique value associated with it. In any given state, if the

maximizer has the upper hand the board score will tend to take on some positive value. Whereas if

the minimizer has the upper hand, it will be some negative value. Every type of game will have some

unique heuristics, which are used to calculate particular values of the board.

Alpha-Beta pruning

With larger search depths for the minimax algorithm, there will be more nodes on the search tree to

examine. This can leave the program using more resources and compute time. Alpha-beta pruning is

an enhancement on the minimax algorithm.

The MiniMax using a search tree could potentially end up evaluating a very large number of nodes.

Alpha-beta pruning is a search algorithm that can help solve this problem by decreasing the number

of nodes that are evaluated. It will stop evaluating a move when just one possibility has been found

that proves that the move will leave a piece is a worse position than a previously evaluated move.

Because this node, and subsequent child nodes in the tree, are no longer evaluated, it means there

are less comparisons and leaves the overall algorithm much faster and more efficient.

Languages

There are a range of programming languages available to solve my problem. From various

programming paradigms to the different APIs and frameworks available to each language, I will

examine the pros and cons of a few potential languages that I could use.

Java

I could use the Java programming language alongside the game framework LibGDX. This would be

helpful as Java is a language I am most familiar with and have used LibGDX on multiple projects

before. With this experience, I won’t need to spend time learning how to use a particular library or

new language which will give me more time to develop my project. I would also use the JDBC API for

the database connectivity. This would be helpful as the JDBC API comes as part of the Java SDK

within the java.sql and javax.sql packages. This is much more convenient as I won’t need to install

any extra libraries.

Python

If I were to use Python, I would have to learn a new game framework or set of libraries (such as

Pygame and DB-API) for the rendering of graphics on screen or dealing with the database

connectivity. While I do have experience working with Python, learning a new library could take too

long. Python is very user friendly and generally an easier language to learn, however python is much

more of a functional language than the more object oriented Java. I think an object oriented

language would be most appropriate for my project as it allows me to split the complexity into

multiple classes and group similar processes together. An object oriented language will offer a

higher level of abstraction than a language such as Python. When creating a complex project, this

12

allows me to take a more top down approach to programming and will leave my project more

maintainable and easier to understand.

C#

C# is a language I am least experienced with. I have used it before but would need to spend time

learning its syntax and libraries more. If I were to use C# I could even use a game engine such as

Unity. A game engine would be helpful as it will do a lot of the heavy lifting for me. This would leave

me focusing more on the content and layout of the game. There are other 2D game frameworks for

C# such as FlatRedBall. While C# is a multi-paradigm language, it is very object oriented like Java.

JavaScript

I have used JavaScript before and created games using the Canvas API, since it isn’t a compiled

language and can run in the browser, it means development time can be much quicker and wouldn’t

require anything more than a text editor and web browser. There are also various open source

HTML5 game frameworks to choose from like Phaser. However, JavaScript is also more of a

functional language which does not support classes, and since my project will benefit from being

object oriented, this language will probably not be my best option.

Final choice

I have chosen to use Java with the LibGDX game framework and the JDBC API. I believe an object

oriented language would be most appropriate for my project. Java is the language I have the most

experience with and having used LibGDX and JDBC before, I will be able to focus more on figuring

out how the game will function rather than learning the syntax of the language or how to use the

library. Both Java and LibGDX are also very well documented.

LibGDX

LibGDX is an open source game development framework written in the Java programming language.

It uses a Gradle based build system and allows for cross platform game development where your

project can be deployed to Windows, Linux, Mac OS X, Android, Blackberry, iOS and HTML5 using

WebGL. LibGDX has various APIs available for common game development tasks such as rendering

graphics, building UIs, playing back audio, parsing XML and JSON, etc.

Using a game framework like this for my project would mean I would have to worry less about how

the low level processes work, leaving me focusing more on how to create the project itself. It also

cuts down on development time, with code more concise and easy to understand.

Relational Database Management Systems

Similar to how there are different languages that I could use, there are also a selection of RDBMS

that are available. Choosing the right RDBMS is an important aspect of my project as updates to the

database will be automatic after every game and pulling data from the database will need to be a

quick process. This means I will need to consider both speed and capacity when choosing my

RDBMS.

MySQL

MySQL is the most widely used of all RDBMS and easy to work with. It is feature rich but not too

complex either. MySQL is also very fast when dealing with the more simple queries such as primary

key lookups, ranged queries, etc. MySQL also still maintains good performance when storing much

13

larger amounts of data, however this is only for the more simple queries and can struggle to keep up

with the more complicated queries.

PostgreSQL

One of the biggest advantages of PostgreSQL is that it handles well with larger amounts of data and

more complex data models. It, like MySQL, is also free and open source. PostgreSQL also has support

for lots of libraries and frameworks. It is also used often in conjunction with Python. However,

installation and configuration can be complicated at times and isn’t the most beginner friendly of

RDBMS. It also has a very large feature set which means that it can take a long time to learn to use

properly.

SQLite

SQLite is a very lightweight RDBMS and good for embedded software. It also has good performance,

is easy to learn and installation and configuration isn’t complicated. SQLite is generally more suited

to smaller scale projects. SQLite however cannot handle larger amounts of HTTP requests/traffic.

This means it is not suited to handling larger scale projects.

Final choice

I have chosen to use MySQL for my project as it can handle all operations I intend to perform and

can maintain good performance with larger datasets. It is also easy to configure and manage for a

project like mine.

Project Requirements

Must

When the program is first run, it must render a chess board on screen along with all the chess pieces

in the correct place.

The program must allow the user to move their chess pieces on the board according to the rules of

chess.

The program must calculate a next move based upon the current state of the board using the

MiniMax algorithm and alpha-beta pruning.

Should

There should be functionality for loading previously played games to rewatch, or continue playing if

the game isn’t finished. This data should be store in a database and updated after every game.

There should be a load game button on screen to load any previous game.

The rule of castling should be implemented with both the user and AI performing the move.

Could

The only rule which isn’t essential is pawn en-passant. This move doesn’t occur very often within a

game of chess and so implementing it won’t be a necessity.

Tiles could change colour when selected or hovered over.

I could implement a main menu system (This would be in the form of a separate screen).

14

The game could display data on the side of the screen about time elapsed for the player, how many

moves have been made, taken pieces and a message box to prompt the user on the move made by

the AI, whether the king is in check or there is a checkmate, which piece a pawn was just promoted

to, etc.

Won’t

I won’t be rendering out a 3D view of the chess board or create any models of the board and pieces.

It will be a top down 2D view of the board.

Proposed Solution
I will be writing this project in the Java programming language using the LibGDX game framework.

With LibGDX, loading and managing assets, rendering graphics, dealing with user input and

managing the game camera and viewport for different window sizes will be much easier. I will be

using JDBC to interact with the database, allowing me to store information about the game. To make

shore I meet all user requirements, my solution will have to meet the following criteria:

 The game board will have to be rendered on screen with all chess pieces in the correct place.

 The movement of each chess piece will have to abide by the official rules of chess.

 The user interacts with the board by using a mouse.

 The algorithm used to calculate the best move will be the MiniMax algorithm using alpha-

beta pruning.

 Information stored in the database will include move history and the player high score

(number of moves taken to check mate the AI).

 There will be functionality to play back a previously saved game.

 Along with the board, information on the time elapsed since the start of the game and

captured pieces will be displayed on screen.

 The game will allow both the player and AI to perform a castling move.

 The game will allow both the player and AI to perform a pawn en-passant move.

Documented Design

Overall System Design

Inputs, Processes, Storage and Outputs

Inputs Processes Storage Outputs

Selecting and moving
a white chess piece to
empty space.

Update new board
positions, record
move and generate
new moves for all
pieces. Increment
move counter. If this
resulted in a finished
game, input to the
board is disabled.

Move is recorded in a
move stack to later be
placed in the
database.

Board is rendered
with piece moved to
new position. Display
time elapsed for
player turn, the move
counter and a prompt
telling the user which
piece the AI moved
and to what position,
whether this resulted
in the king being in
check or if there is a
checkmate.

15

Selecting and moving
a white chess piece to
take a black piece.

Update new board
positions, remove and
dispose taken piece,
record move and
generate new moves
for all pieces.
Increment move
counter. If this
resulted in a finished
game, input to the
board is disabled.

Move is recorded in a
move stack to later be
placed in the
database.

Board is rendered
with pieces moved to
new position. The
taken piece is
removed from the
board and placed in a
taken pieces table on
screen to the side of
the board. Display
time elapsed for
player turn, the move
counter and a prompt
telling the user which
piece the AI moved
and to what position,
whether this resulted
in the king being in
check or if there is a
checkmate.

Enter username in the
text field.

No process until the
record game button is
pressed

No storage until the
record game button is
pressed

Display the username
in the text field.

Record game button is
pressed.

If this is a brand-new
game, and if there is
no username in the
text field, the user is
prompted to enter a
username. If this is an
old game being
resaved, then the text
field would have been
disabled and there will
be no username in the
text field. The game so
far is then saved to
the database
depending on
whether the game is
being updated or
saved and the user is
added to the database
if it is a new user. The
board is disabled if the
game is complete.
However, the game
won’t be saved to the
database if it is an old
game that has already
been completed. The
load game button is
automatically pressed

Game information is
stored in the
database. In the users
table this includes the
user id, the name and
high-score. In the
games table this
includes game id, a
time stamp, the time
elapsed for the player,
the score/moves
made, the move
history, the user id
and the win loss state.

A prompt to the user
is displayed on screen
if no username is
entered for a new
game save. ‘Game
Saved’ or ‘Game
Updated’ is displayed
on screen depending
on whether this save
was a game update or
new game save. All
games in the database
are display on screen
in a scrollable table.
The format for
displaying a game is:
Name : time-stamp :
score :
win/loss/incomplete

16

to display the games
and the new saved
game.
A stored procedure in
the database is then
called to update the
high_score value in
the users table.

Load game button is
pressed.

All games are
retrieved from the
database and
displayed on screen in
a scrollable table.

Nothing is saved when
loading games from
the database.

All games in the
database are display
on screen in a
scrollable table. The
format for displaying a
game is:
Name : time-stamp :
score :
win/loss/incomplete

A game is the game
table is clicked to play.

The board is updated
to the state of the
game at the last save.
If this was a finished
game, input to the
board is disabled.

Nothing is stored
when a game is
loaded.

The time elapsed for
the game, the number
of moves, the game
prompts and pieces
taken for that game
are displayed on
screen. The board is
rendered to the
loaded game state.

17

Design of Project Modules
Details of each package/module will be described fully in the technical solution. Here I intend to give

an overview of what each I intend each package’s purpose is and what files and stored in each

package.

AI Package

This package will encapsulate everything to do with the AI calculating its best move for a given state

of the board. There will be 3 files in this package, 2 or which are used with the evaluation function

(function used to evaluate how advantageous or disadvantageous a state of the board is).

Class: GameAI

This will contain the search algorithm and evaluation function for the game AI.

Class: PieceSquareTables

This will be a static class containing all the piece square tables for each piece on the board. A piece

square table is just a simple 8x8 table containing values for each tile of the board that a piece is

either better off (some positive value) or not better off (some negative value) in.

Class: RelativePieceValues

This will also be a static class containing the relative piece values for each piece. For instance, a

queen would be 900, a rook would be 500 and a pawn would be 100. This would mean 1 rook and 4

pawns are equivalent to a queen.

Database Package

This package will contain all code needed to interact with the database and store information about

a game. There are 2 files in the package.

Class: DBConnection

This will be a static class. Its main purpose is to contain all functionality for saving a game, loading a

game/games.

Class: GameData

This class will be used to represent a game/row in the database. Each instance will contain unique

values corresponding to the values of the row in the database (id, score, move history, etc.).

Input Package

This class will contain just 1 file that deals with the game input.

Class: GameInput

This class will keep track of any key presses, mouse movements, mouse clicks for the board. This

does not deal with the input for the HUD.

Entities Package

This package will contain information about all chess pieces. All unique child chess pieces inside

entities.chesspieces will inherit from the parent abstract ChessPiece class.

18

Class: ChessPiece

This will be an abstract class to represent a chess piece and contain everything common to each

piece. This will be the parent class to all other chess pieces.

Entities.Chesspieces

This sub-package will contain all child class implementations of ChessPiece. This includes the classes:

 Bishop

 King

 Knight

 Pawn

 Queen

 Rook

Screens Package

This is where the three most important components of my project will live; the Board, GameScreen

and HUD.

Class: GameScreen

This class will be composed of an instance of both the Board and HUD. It will deal with setting up all

necessities for the project.

Class: Board

This class will used to represent the board, updating and rendering the tiles and pieces in response

to user input.

Class: HUD

This class will be used to represent the HUD, positioning and updating all widgets.

Utility Package

This package will contain all functionality for moving a piece. This would involve taking other pieces,

abiding by the castling rules and undoing moves. This is important as the minimax algorithm (the

search algorithm for the AI part of my code) works by looking a certain number of moves ahead.

Class: PieceMovements

This static class will perform and undo piece movements. It will keep track of the actual movements

in a stack.

Class: PieceMovement

This class will represent a single piece movement by keeping track of information such as the piece

to move, where to move it from, where to move it to, what the piece is at the position to move to if

there is a piece there, etc.

Game Class

This class is the starting point of the application and is necessary for the game library I am using. It

just creates an instance of GameScreen.

19

Definition of Record Structure
There are areas of my project that call for specific use of data structures. I will list a few examples of

the structures and where I will use them

The Move Stack

When considering how to keep track of the movements that occur throughout the course of the

game, I found it important to think about how some moves will be undone. This would mean that

the undone movements would not become part of the final move sequence for the finished game.

The best way to represent this information would therefore be a stack. Every move made will be

pushed to the top of the stack and moves undone will be popped off the top. Moves that are not

undone will remain on the stack as final moves made (the final move chosen by the minimax

algorithm for instance) and will become part of the finished sequence of moves for the game.

The Game Message Queue

My program will need to display messages to the user throughout the game such as where a black

piece moved to, whether the game was updated or saved, whether the player’s king is in check, etc.

Messages will be displayed in sequence and therefore more than one message could be displayed at

one time. For example, a message prompting the user where the AI moved a piece to and that the

player’s king is in check. To properly order these messages, I will use a queue. The message queue

will contain 3 items at one time, each representing a message to display on screen. The newest

message added to the queue will be displayed at the bottom of the message box and older messages

will be displayed above. This way the player can see which messages are the most recent.

Validating Input
There will be two main ways that a user can enter data into the program; through the game board

and the text field. The following table details how I validate each of these inputs.

Validation Check Description Suitable Data Erroneous Data Displayed Error
Message/Actions
Taken for
Erroneous Data

Lookup/List A check that the
position a player
wants to move a
piece to is within
the pieces move
set.

A coordinate (x,
y) that is within
a piece’s move
set.

A coordinate (x,
y) that is not
within a piece’s
move set.

Board is not
updated.

Lookup/List A check that the
position a player
wants to move a
piece to doesn’t
result in the king
being in check

A coordinate (x,
y) that is within
a piece’s move
set that doesn’t
leave the king in
check.

A coordinate (x,
y) that is within a
piece’s move set
that doesn’t
leave the king in
check.

Displayed
message ‘King in
Check!’

Presence A check that the
username text
field contains
data if this is a
new game.

A string of
length greater
than 0.

No string
entered.

Displayed
message ‘Enter a
Username!’

20

Length The username
entered must be
less than or equal
to 20.

String of length
less than or
equal to 20.

A string greater
than 20

Displayed
message ‘Max
Username
Length is 20!’

Database Design
Within my database there will be two main tables: the games table and the users table. The games

table will all information about all games including a user id foreign key corresponding to the id of

the users table. The users table will store the name of the user as well as the high-score. The

following E-R Diagram shows how I will lay out my tables as well as the relationships between them.

There is a foreign key reference in the games table to the users table; user_id. The user_id in games

corresponds to a primary key of the users table. The same user_id can occur in multiple rows. There

is a one-to-many relationship between users and games which means that one user can have many

different games.

Data Dictionaries

Users Table

Name Data Type Description Example (Valid, Invalid)

id SMALLINT The primary key of
the users table,
uniquely identifies a
user.

3
-2 (though SMALLINT can
store negative numbers, I
do not want there to be
negative ids).

name VARCHAR(20) The name of the
user, cannot exceed
20 characters.

Dylan
123username321username

high_score SMALLINT The high score for
this user.

12
-10 (It is impossible to have
a negative high score)

Games Table

21

Name Data Type Description Example

id SMALLINT The primary key of
games table, uniquely
identifies a game.

14
-8 (I also do not want
to store negative ids
for the games table).

time_stamp DATE The date the game
was last saved.

2018-02-15
2030-04-29 (Future
date),
2017-09-32 (Invalid
date)

time_survived SMALLINT The elapsed time for
the game at the last
save.

259 (2:59)
4 (0:04)
63 (0:63) – This should
be represented as 103
(1:03)
-201 (-2:01) – Cannot
have a negative time

score SMALLINT The number of moves
for the game at the
last save.

20
-10 (Cannot make a
negative number of
moves).

move_history TEXT A string representing
all game moves at the
last save. The format
for a move would be:
previousX previousY
newX newY
(pawnPromotion
character)
Where previousX,
previousY, newX and
newY are numbers in
the range 0-7
representing indexes
of the 2D board array.
The pawn promotion
character would only
appear if a pawn was
promoted as part of a
move made.
Some examples
include…
3545 would mean the
piece at 6D moved to
6E.
6667Q would mean
the white pawn at G7
moved to G8 and was
promoted to a Queen.

11136755… – start of
game, white pawn
move followed by
black knight move.
…6160K… - black
pawn promotion to a
knight.
…7787… – outside
board range
…1617L… – invalid
pawn promotion
character.

22

user_id SMALLINT The foreign key to the
users id in the users
table.

8
-3 (I do not want
negative ids).
Number not matching
an id in users.

win_loss TINYINT An integer to track
whether the game
was a win (0), a loss
(1) or an unfinished
game (2) at the last
save.

0, 1, 2
Anything else.

Sample of Planned SQL Queries

I will be using a range of different queries throughout my project to retrieve data and update data in

the database. All these queries will be parameterized so that I can insert values into the queries

much easier.

Data Definition Language

ALTER

I have decided that I need to make a change to the games table as I want to store 3 separate values

for win_loss; 0 for loss, 1 for win and 2 for unfinished. So, rather than constructing the entire table

again, I use the following query.

I will be using a stored procedure to

update high_score, so giving this

column a default value of 0 means

that I won’t have to provide a value

in the UPDATE query in my program.

TEXT character large object can

store 64KB, a string of 65535

characters in length. With a move

being represented by four separate

integers, that means TEXT can store

a game with 16383 moves. Which is

more moves that can be made in a

single game.

I will set the user_id column to be a

foreign key referencing the id in the

users table.

23

UPDATE
UPDATE games SET time_stamp=(SELECT CURDATE()), time_survived=?, score=?,

move_history=?, win_loss=? WHERE id=?;

I will use this query to make an update to a row in the games table. This will update an already

existing game in the database. For that I will need to know the id of the game and I won’t be

updating the user_id of the game as I will already have that stored. Rather than setting finding the

date in the code and then setting that value for time_stamp, I will use a sub-query SELECT

CURDATE() which returns the current date in YYYY-MM-DD format.

SELECT
SELECT * FROM users WHERE name=?;

This is a very simple query that I will use to check if a row in the database with a given name already

exists. Using this, I will only save new users to the users table, which means there is no repeated

data.

INSERT
INSERT INTO users(name) VALUES(?);

I will use this query to insert a new user into the users table. I do not need to provide an id or

high_score as the id of the newly added user will be the next available id (AUTO_INCREMENT) and

the high_score will take on a default value of 0, to later be updated by a stored procedure.

INSERT INTO games(time_stamp, time_survived, score, move_history, user_id,

win_loss) VALUES((SELECT CURDATE()), ?, ?, ?, (SELECT id FROM users WHERE name =

?), ?);

This is the most complex of the queries I will use in my program. This query will be used to insert a

new game into the games table. The only value I do not need to pass is the id, as it will be

automatically incremented with a new insert (brand-new game). I will again be using the SELECT

CURDATE() sub-query to get the current date the game will be saved on. I will also use another sub-

query (SELECT id FROM users WHERE name = ?), which will allow me to look up the value of the user

id in the users table given that I know the name of the user. Because there won’t be any users with

the same username, this means there will only be one user id for any given name.

Program Algorithms
There are various algorithms I will be using in my project. The most complex of which will be the

MiniMax algorithm. This is the search algorithm for the game AI. It has an improvement called alpha-

beta pruning which will decrease the number of nodes evaluated, meaning it can run faster and

search at deeper depths. This is used in conjunction with an evaluation function, which can consider

a multitude of factors when calculating a value for the board state. The following are pseudo code

representations of how I intend to implement both my search algorithm and evaluation function.

The MiniMax Algorithm
function MiniMax(depth, maxi)

 if maxi is true then

 if depth is 0 then

 return EvaluateBoard()

 max = -∞

 for all moves

 score = MiniMax(depth-1, !maxi)

 max = MaximumOf(score, max)

 return max

 else

 if depth is 0 then

 return -EvaluateBoard()

24

 min = +∞

 for all moves

 score = MiniMax(depth-1, !maxi)

 min = MinimumOf(score, min)

 return min

This is the pseudo code of the minimax algorithm. It will return a value when for the leaf nodes (at a

depth of 0) and for nodes that aren’t leaf nodes, their value is taken from a descendant leaf node.

The value of a leaf node is calculated by an evaluation function which produces some heuristic value

representing the favourability of a node (game state) for the maximising player. Nodes that lead to a

better outcome for the maximising player will therefore take on higher values than nodes that are

more favourable for the minimizing player.

The MiniMax Algorithm with Alpha-Beta
function MiniMaxWithAlphaBeta(depth, alpha, beta, maxi)

 if maxi is true then

 if depth is 0 then

 return EvaluateBoard()

 max = -∞

 for all moves

 score = MiniMaxWithAlphaBeta(depth-1, alpha, beta, !maxi)

 max = MaximumOf(score, max)

 alpha = MaximumOf(alpha, max)

 if beta <= alpha then

 break out of loop

 return max

 else

 if depth is 0 then

 return -EvaluateBoard()

 min = +∞

 for all moves

 score = MiniMaxWithAlphaBeta(depth-1, alpha, beta, !maxi)

 min = MinimumOf(score, min)

 beta = MinimumOf(beta, min)

 if beta <= alpha then

 break out of loop

 return min

The alpha beta pruning is an enhancement on the minimax algorithm that introduces two new

values; alpha and beta. Alpha represents the best score for max along the path to the current state

of the game. Beta represents the best score for min along the path to the current state of the game.

The Evaluation Function

The evaluation function will probably be the most important aspect of the game AI. There are

various aspects to an evaluation function, some of the most important include:

 Material – The sum of piece values for each side.

 Relative Piece Values – A value assigned to each piece when calculating its relative strength

in comparison to another piece.

 Mobility – A measure of how many legal moves can be made in a given state of the game.

 King Safety – An evaluation of how safe the king is in any given state of the board.

 Piece-Square tables – A way of assigning specific piece values to specific board positions.

There are other parts of an evaluation function that you can consider but for my project I want to

just use material, relative piece values and piece-square tables to determine the value of a state of

the board. So, my evaluation function will look like the following.

25

function EvaluateBoard()

 total = 0

 for all pieces on the board

 total += GetPieceValue(piece)

 return total

function GetPieceValue(piece)

 value = 0

 value += PieceRelativeValue(piece)

 value += PieceSquareTableValue(piece)

 if piece is white then

 return value

 else

 return -value

I will sum every piece’s relative value and square table reference on the board and return a negative

value for each black piece and a positive value for each white piece. The EvaluateBoard function will

return a unique evaluation of the board at that state.

Class Definitions and Diagrams

Class Methods and Properties (Method : Return Type) / (Property : Data Type)

GameAI

PieceSquareTables

26

RelativePieceValues

DBConnection

GameData

Bishop

King

Knight

Pawn

Queen

Rook

27

ChessPiece

GameInput

Board

GameScreen

HUD

28

PieceMovement

PieceMovements

GameClass

See file named ‘ChessUML.jpeg’ for the UML class digram.

A Design of the User Interface
I intend to keep my user interface simple and easy to understand. With this in mind, I am going to

keep everything on one screen; with the chessboard and rendered pieces to the left and the HUD

and UI widgets to the right.

The board and

chess pieces.

This is where

data will be

input for the

username.

After the load game button is pressed a

display of all previous games will pop up and

there will be a scroller to the right to browse

through all past games.

This is where the

taken pieces for

the game will be

displayed.

Here is where all

outputs (game

messages/prompts)

will be displayed.

The time elapsed for the

player and number of moves

made will be displayed here.

29

Technical Solution

Introduction

com.dylanwalsh.chessai

com.dylanwalsh.chessai.ai

GameAI
package com.dylanwalsh.chessai.ai;

import com.badlogic.gdx.math.Vector2;

import com.dylanwalsh.chessai.entities.ChessPiece;

import com.dylanwalsh.chessai.util.PieceMovements;

import java.util.ArrayList;

/**

 * This class deals with all functionality concerned with generating the best move

for the AI. It does this by using the minimax

 * algorithm with the alpha-beta pruning enhancement.

 */

public class GameAI {

 //The depth to explore the search tree.

 private int searchDepth = 3;

 //A copy of the board.

 private ChessPiece[][] board;

 //The piece and move evaluated by AI for the current turn.

 private ChessPiece piece;

 private Vector2 move;

 /**

 * This method is called to assign values to piece and move.

 * @param board the 2D board array.

 */

 public void calculateBestMove(ChessPiece[][] board) {

 this.board = board.clone();

 piece = null;

 move = null;

 miniMaxAlphaBeta(searchDepth, -11111, 11111, false);

 }

 /**

 * The minimax search algorithm, which traverses the search tree of potential

future moves and evaluates the best move for any

 * given game state (state of the board) down to a specific depth. This is a

recursive algorithm which calls itself.

 * @param depth the depth to explore the search tree.

 * @param alpha alpha value for improved minimax algorithm.

 * @param beta beta value for improved minimax algorithm.

 * @param maxi true if this is the maximizing player, false if this is the

minimizer.

 * @return a score/value measuring the favorability of a particular node at a

particular depth.

 */

 private int miniMaxAlphaBeta(int depth, int alpha, int beta, boolean maxi) {

 if(maxi) {

30

 if(depth == 0) return evaluateBoard();

 int max = -9999;

 for(ChessPiece p : getPieces(maxi)) for(Vector2 m :

p.getAllPotentialMoves()) {

 PieceMovements.move(board, p, (int)m.x, (int)m.y);

 int score = miniMaxAlphaBeta(depth-1, alpha, beta, !maxi);

 try {

 if(p.getFriendlyKing(board).isInCheck(board)) score = -9999;

 } catch(NullPointerException e) {

 score = -9999;

 }

 PieceMovements.undo();

 if(score > max) {

 max = score;

 if(depth == searchDepth) {

 piece = p;

 move = m;

 }

 }

 alpha = Math.max(alpha, max);

 if(beta<=alpha) return max;

 }

 return max;

 } else {

 if(depth == 0) return -evaluateBoard();

 int min = 9999;

 for(ChessPiece p : getPieces(maxi)) for(Vector2 m :

p.getAllPotentialMoves()) {

 PieceMovements.move(board, p, (int)m.x, (int)m.y);

 int score = miniMaxAlphaBeta(depth-1, alpha, beta, !maxi);

 try {

 if(p.getFriendlyKing(board).isInCheck(board)) score = 9999;

 } catch(NullPointerException e) {

 score = 9999;

 }

 PieceMovements.undo();

 if(score < min) {

 min = score;

 if(depth == searchDepth) {

 piece = p;

 move = m;

 }

 }

 beta = Math.min(beta, min);

 if(beta<=alpha) return min;

 }

 return min;

 }

 }

 /**

 * The method used to evaluate the state of the board, which considers all

pieces on the board. It uses a pieces relative piece

 * value as well as looking up it piece square table to determine its value.

 *

 * @return an evaluation/integer value of the board.

 */

 private int evaluateBoard() {

 int total = 0;

 for(ChessPiece[] row : board) {

 for(ChessPiece p : row) {

 if(p!=null) {

 total += getPieceValue(p);

 }

 }

 }

 return total;

 }

31

 /**

 * This method retrieves a given pieces value on the board. It uses the piece's

relative piece value and looks up it's piece

 * square table value to determine a value for the piece.

 * @param p the ChessPiece to evaluate.

 * @return the chess piece's value on the board

 */

 private int getPieceValue(ChessPiece p) {

 int value = 0;

 value += getPieceRelativeValue(p);

 value += getPieceSquareTableValue(p);

 return (p.getPiece().toString().charAt(0)=='W'?value:-value);

 }

 /**

 * This method looks up a piece's position on it's piece square table.

 * @param p the piece to look up

 * @return a value at the piece's current position on it's piece square table

representing how favorable that position is for that piece.

 */

 private int getPieceSquareTableValue(ChessPiece p) {

 short[][] table = null;

 switch(p.getPiece()) {

 case WPAWN:

 table =

PieceSquareTables.reverseTable(PieceSquareTables.PAWNTABLE);

 break;

 case BPAWN:

 table = PieceSquareTables.PAWNTABLE;

 break;

 case WKNIGHT:

 table =

PieceSquareTables.reverseTable(PieceSquareTables.KNIGHTTABLE);

 break;

 case BKNIGHT:

 table = PieceSquareTables.KNIGHTTABLE;

 break;

 case WROOK:

 table =

PieceSquareTables.reverseTable(PieceSquareTables.ROOKTABLE);

 break;

 case BROOK:

 table = PieceSquareTables.ROOKTABLE;

 break;

 case WBISHOP:

 table =

PieceSquareTables.reverseTable(PieceSquareTables.BISHOPTABLE);

 break;

 case BBISHOP:

 table = PieceSquareTables.BISHOPTABLE;

 break;

 case WQUEEN:

 table =

PieceSquareTables.reverseTable(PieceSquareTables.QUEENTABLE);

 break;

 case BQUEEN:

 table = PieceSquareTables.QUEENTABLE;

 break;

 case WKING:

 table =

PieceSquareTables.reverseTable(PieceSquareTables.KINGTABLE);

 break;

 case BKING:

 table = PieceSquareTables.KINGTABLE;

 break;

 }

 return table[(int)p.getPosition().y][(int)p.getPosition().x];

32

 }

 /**

 * Looks up this pieces relative value.

 * @param p the piece to look up.

 * @return the piece's relative value.

 */

 private int getPieceRelativeValue(ChessPiece p) {

 switch(p.getPiece()) {

 case WPAWN:

 case BPAWN:

 return RelativePieceValues.PAWN;

 case WKNIGHT:

 case BKNIGHT:

 return RelativePieceValues.KNIGHT;

 case WROOK:

 case BROOK:

 return RelativePieceValues.ROOK;

 case WBISHOP:

 case BBISHOP:

 return RelativePieceValues.BISHOP;

 case WQUEEN:

 case BQUEEN:

 return RelativePieceValues.QUEEN;

 case WKING:

 case BKING:

 return RelativePieceValues.KING;

 }

 return 0;

 }

 /**

 * @param isWhite if true, returns all white pieces, if false returns all black

pieces.

 * @return a list of all white or black pieces on the board.

 */

 private ArrayList<ChessPiece> getPieces(boolean isWhite) {

 ArrayList<ChessPiece> pieces = new ArrayList<ChessPiece>();

 for(ChessPiece[] row : board)

 for(ChessPiece p : row)

 if(p != null) {

 if(isWhite) {

 if(p.getPiece().toString().charAt(0) == 'W') pieces.add(p);

 } else {

 if(p.getPiece().toString().charAt(0) == 'B') pieces.add(p);

 }

 }

 return pieces;

 }

 /**

 * @return the next piece to move determined by the minimax algorithm.

 */

 public ChessPiece getPiece() { return piece; }

 /**

 * @return the position to move the piece to determined by the minimax

algorithm.

 */

 public Vector2 getMove() { return move; }

}

PieceSquareTables
package com.dylanwalsh.chessai.ai;

/**

 * This is a static class containing the piece square tables for each piece. These

33

tables are used in GameAI.

 */

public class PieceSquareTables {

 public static short[][] PAWNTABLE =

 {

 {70, 70, 70, 70, 70, 70, 70, 70},

 {50, 50, 50, 50, 50, 50, 50, 50},

 {10, 10, 20, 30, 30, 20, 10, 10},

 {5, 5, 10, 25, 25, 10, 5, 5},

 {0, 0, 0, 20, 20, 0, 0, 0},

 {5, -5,-10, 0, 0,-10, -5, 5},

 {5, 10, 10,-20,-20, 10, 10, 5},

 {0, 0, 0, 0, 0, 0, 0, 0}

 };

 public static final short[][] KNIGHTTABLE =

 {

 {-50,-40,-30,-30,-30,-30,-40,-50},

 {-40,-20, 0, 0, 0, 0,-20,-40},

 {-30, 0, 10, 15, 15, 10, 0,-30},

 {-30, 5, 15, 20, 20, 15, 5,-30},

 {-30, 0, 15, 20, 20, 15, 0,-30},

 {-30, 5, 10, 15, 15, 10, 5,-30},

 {-40,-20, 0, 5, 5, 0,-20,-40},

 {-50,-40,-30,-30,-30,-30,-40,-50}

 };

 public static final short[][] BISHOPTABLE =

 {

 {-20,-10,-10,-10,-10,-10,-10,-20},

 {-10, 0, 0, 0, 0, 0, 0,-10},

 {-10, 0, 5, 10, 10, 5, 0,-10},

 {-10, 5, 5, 10, 10, 5, 5,-10},

 {-10, 0, 10, 10, 10, 10, 0,-10},

 {-10, 10, 10, 10, 10, 10, 10,-10},

 {-10, 5, 0, 0, 0, 0, 5,-10},

 {-20,-10,-10,-10,-10,-10,-10,-20}

 };

 public static final short[][] ROOKTABLE =

 {

 {0, 0, 0, 0, 0, 0, 0, 0},

 {5, 10, 10, 10, 10, 10, 10, 5},

 {-5, 0, 0, 0, 0, 0, 0, -5},

 {-5, 0, 0, 0, 0, 0, 0, -5},

 {-5, 0, 0, 0, 0, 0, 0, -5},

 {-5, 0, 0, 0, 0, 0, 0, -5},

 {-5, 0, 0, 0, 0, 0, 0, -5},

 {0, 0, 0, 5, 5, 0, 0, 0}

 };

 public static final short[][] QUEENTABLE =

 {

 {-20,-10,-10, -5, -5,-10,-10,-20},

 {-10, 0, 0, 0, 0, 0, 0,-10},

 {-10, 0, 5, 5, 5, 5, 0,-10},

 {-5, 0, 5, 5, 5, 5, 0, -5},

 {0, 0, 5, 5, 5, 5, 0, -5},

 {-10, 5, 5, 5, 5, 5, 0,-10},

 {-10, 0, 5, 0, 0, 0, 0,-10},

 {-20,-10,-10, -5, -5,-10,-10,-20}

 };

 public static final short[][] KINGTABLE =

 {

 {-30,-40,-40,-50,-50,-40,-40,-30},

 {-30,-40,-40,-50,-50,-40,-40,-30},

 {-30,-40,-40,-50,-50,-40,-40,-30},

 {-30,-40,-40,-50,-50,-40,-40,-30},

 {-20,-30,-30,-40,-40,-30,-30,-20},

34

 {-10,-20,-20,-20,-20,-20,-20,-10},

 {20, 20, 0, 0, 0, 0, 20, 20},

 {20, 30, 10, 0, 0, 10, 30, 20}

 };

 public static short[][] reverseTable(short[][] table) {

 short[][] reversedTable = new short[8][8];

 for(int i = table.length-1; i >= 0; i--) {

 reversedTable[i] = table[7-i];

 }

 return reversedTable;

 }

}

RelativePieceValues
package com.dylanwalsh.chessai.ai;

/**

 * A static class to contain the relative piece values for each piece. These values

are used in GameAI.

 */

public class RelativePieceValues{

 //Piece value constants

 public static final int PAWN = 100;

 public static final int KNIGHT = 320;

 public static final int BISHOP = 330;

 public static final int ROOK = 500;

 public static final int QUEEN = 900;

 public static final int KING = 20000;

}

com.dylanwalsh.chessai.database

DBConnection
package com.dylanwalsh.chessai.database;

import java.sql.*;

import java.util.ArrayList;

//TODO: Make high score stored procedure

/**

 * This is a static class that deals with all functionality concerned with

communicating with the database. This includes sending data

 * to be recorded in the database as well as retrieving data from the database. A

GameData object is returned from each method where

 * data for a game can be easily accessed.

 */

public class DBConnection {

 //Values for communicating with the database.

 private static String connectionURL;

 private static String user;

 private static String pass;

 /**

 * The values needed to connect to the database are initialized in this method.

This is only called once.

 */

 public static void initialize() {

 connectionURL = "jdbc:mysql://localhost:3306/chess_database";

 user = "user01";

 pass = "password1";

 }

 /**

35

 * A method to store details of a game in the database. The games table in the

database is either updated or a new record is

 * added depending on whether this is a new game or an old game being re-saved.

A new user is added to the users table depending

 * on whether this is a new user saving the game or not.

 * @param name the name of the user saving the game.

 * @param time the time elapsed for the player for the game being saved.

 * @param moves the number of moves made for the game being saved.

 * @param gameMoves a string representing the move history for the game being

saved.

 * @param win the state of the game being saved. Win - 1, Loss - 0, Unfinished

- 2

 * @param gameId the gameId of the game to update if this is a re-save,

otherwise -1.

 * @return a new GameData object representing the saved game.

 */

 public static GameData saveGame(String name, int time, int moves, String

gameMoves, int win, int gameId) {

 Connection dbConn = null;

 PreparedStatement dbStmt1 = null;

 PreparedStatement dbStmt2 = null;

 try {

 dbConn = DriverManager.getConnection(connectionURL, user, pass);

 /*

 I use 4 SQL statements in the saveGame() method, all of which are

parametrized queries. I do this so that values

 passed into this method can be easily inserted into the queries. The

first 2 queries are used for the users table and

 the final 2 are for the games table, though I do use a sub-query in

query2 to access the user_id from the users table.

 The CURDATE() function in mysql returns the current date in the format

YYYY-MM-DD.

 */

 String query1Check = "SELECT * FROM users WHERE name=?;";

 String query1 =

 "INSERT INTO users(name) VALUES(?);";

 String query2 =

 "INSERT INTO games(time_stamp, time_survived, score, move_history,

user_id, win_loss) VALUES((SELECT CURDATE()), ?, ?, ?, (SELECT id FROM users WHERE

name = ?), ?);";

 String query2Update =

 "UPDATE games SET time_stamp=(SELECT CURDATE()), time_survived=?,

score=?, move_history=?, win_loss=? WHERE id=?;";

 dbStmt1 = dbConn.prepareStatement(query1Check);

 dbStmt1.setString(1, name);

 ResultSet dbRes1 = dbStmt1.executeQuery();

 if(!dbRes1.next() && gameId==-1) { //Name doesn't exist in users and

not updating an older game.

 dbStmt1 = dbConn.prepareStatement(query1);

 dbStmt1.setString(1, name);

 dbStmt1.executeUpdate();

 }

 if(gameId == -1) { //Newly save game.

 dbStmt2 = dbConn.prepareStatement(query2);

 dbStmt2.setInt(1, time);

 dbStmt2.setInt(2, moves);

 dbStmt2.setString(3, gameMoves);

 dbStmt2.setString(4, name); //Sub-query to look up user id using

name

 dbStmt2.setInt(5, win);

 } else { //Save over old game.

36

 dbStmt2 = dbConn.prepareStatement(query2Update);

 dbStmt2.setInt(1, time);

 dbStmt2.setInt(2, moves);

 dbStmt2.setString(3, gameMoves);

 dbStmt2.setInt(4, win);

 dbStmt2.setInt(5, gameId);

 }

 dbStmt2.executeUpdate();

 } catch(SQLException e) {

 System.out.println("SQLException thrown, server may not be running!");

 } finally {

 try {

 if(dbConn != null)

 dbConn.close();

 if(dbStmt1 != null)

 dbStmt1.close();

 if(dbStmt2 != null)

 dbStmt2.close();

 } catch(SQLException e2) {}

 }

 return getLatestGame(gameId);

 }

 /**

 * Retrieves latest game added/modified row in games table. If userId is -1,

get the row with the highest id, else get the row

 * with that id.

 * @param gameId the id of the game if it is known. Otherwise -1.

 * @return a new GameData object representing the game retrieved from the

database.

 */

 public static GameData getLatestGame(int gameId) {

 Date timeStamp = null;

 int timeSurvived = -1;

 int score = -1;

 String moveHistory = "";

 String name = "";

 int win = -1;

 Connection dbConn = null;

 Statement dbStmt1 = null;

 PreparedStatement dbStmt2 = null;

 try {

 dbConn = DriverManager.getConnection(connectionURL, user, pass);

 String query1 = "SELECT id, time_stamp, time_survived, score,

move_history, (SELECT name FROM users WHERE id=user_id) AS name, win_loss FROM

games ORDER BY id DESC LIMIT 0, 1;";

 String query2 = "SELECT time_stamp, time_survived, score, move_history,

(SELECT name FROM users WHERE id=user_id) AS name, win_loss FROM games WHERE id=?";

 if(gameId==-1) { //Retrieve most recently added row.

 dbStmt1 = dbConn.createStatement();

 ResultSet dbRes = dbStmt1.executeQuery(query1);

 if(dbRes.next()) {

 gameId = dbRes.getInt("id");

 timeStamp = dbRes.getDate("time_stamp");

 timeSurvived = dbRes.getInt("time_survived");

 score = dbRes.getInt("score");

 moveHistory = dbRes.getString("move_history");

 name = dbRes.getString("name");

 win = dbRes.getInt("win_loss");

 }

37

 } else { //Retrieve row with gameId.

 dbStmt2 = dbConn.prepareStatement(query2);

 dbStmt2.setInt(1, gameId);

 ResultSet dbRes = dbStmt2.executeQuery();

 if(dbRes.next()) {

 timeStamp = dbRes.getDate("time_stamp");

 timeSurvived = dbRes.getInt("time_survived");

 score = dbRes.getInt("score");

 moveHistory = dbRes.getString("move_history");

 name = dbRes.getString("name");

 win = dbRes.getInt("win_loss");

 }

 }

 } catch(SQLException e) {

 System.out.println("SQLException thrown, server may not be running!");

 } finally {

 try {

 if(dbConn != null)

 dbConn.close();

 if(dbStmt1 != null)

 dbStmt1.close();

 if(dbStmt2 != null)

 dbStmt2.close();

 } catch(SQLException e2) {}

 }

 return new GameData(gameId, timeStamp, timeSurvived, score, moveHistory,

name, win);

 }

 /**

 * This method retrieves all previously saved games in the database and returns

them in the form of a list.

 * @return an ArrayList containing GameData objects.

 */

 public static ArrayList<GameData> getPastGames() {

 ArrayList<GameData> games = new ArrayList<GameData>();

 Connection dbConn = null;

 Statement dbStmt = null;

 try {

 dbConn = DriverManager.getConnection(connectionURL, user, pass);

 String query = "SELECT id, time_stamp, time_survived, score,

move_history, (SELECT name FROM users WHERE id=user_id) AS name, win_loss FROM

games;";

 dbStmt = dbConn.createStatement();

 ResultSet dbRes = dbStmt.executeQuery(query);

 while(dbRes.next()) {

 int gameId = dbRes.getInt("id");

 Date timeStamp = dbRes.getDate("time_stamp");

 int timeSurvived = dbRes.getInt("time_survived");

 int score = dbRes.getInt("score");

 String moveHistory = dbRes.getString("move_history");

 String name = dbRes.getString("name");

 int win = dbRes.getInt("win_loss");

 games.add(new GameData(gameId, timeStamp, timeSurvived, score,

moveHistory, name, win));

 }

38

 } catch(SQLException e) {

 System.out.println("SQLException thrown, server may not be running!");

 } finally {

 try {

 if(dbConn != null)

 dbConn.close();

 if(dbStmt != null)

 dbStmt.close();

 } catch(SQLException e2) {}

 }

 return games;

 }

}

GameData
package com.dylanwalsh.chessai.database;

import java.sql.Date;

/**

 * Stores data about a single game.

 */

public class GameData {

 /**

 * All private fields for this class, each representing a column in the games

table, except name, which is retrieved

 * using the user_id.

 */

 private int gameId;

 private Date timeStamp;

 private int timeSurvived;

 private int score;

 private String moveHistory;

 private String name;

 private int win;

 public GameData(int gameId, Date timeStamp, int timeSurvived, int score, String

moveHistory, String name, int win) {

 this.gameId = gameId;

 this.timeStamp = timeStamp;

 this.timeSurvived = timeSurvived;

 this.score = score;

 this.moveHistory = moveHistory;

 this.name = name;

 this.win = win;

 }

 /**

 * The following are all getter methods for the private fields of this class.

This way I can be shore the values for the private

 * fields are not modified outside of this class.

 */

 public int getGameId() {

 return gameId;

 }

 public Date getTimeStamp() {

 return timeStamp;

 }

 public int getTimeSurvived() {

 return timeSurvived;

39

 }

 public int getScore() {

 return score;

 }

 public String getMoveHistory() {

 return moveHistory;

 }

 public String getName() {

 return name;

 }

 public int getWin() {

 return win;

 }

}

com.dylanwalsh.chessai.entities

com.dylanwalsh.chessai.entities.chesspieces

Bishop
package com.dylanwalsh.chessai.entities.chesspieces;

import com.badlogic.gdx.math.Vector2;

public class Bishop extends com.dylanwalsh.chessai.entities.ChessPiece {

 public Bishop(Pieces type, int startX, int startY){ super(type, startX,

startY); }

 @Override

 public void generatePositions(com.dylanwalsh.chessai.entities.ChessPiece[][]

board) {

 //Clear availablePositions and tempPos.

 availablePositions.clear();

 tempPos.clear();

 //Add positions to tempPos (excluding current position).

 //Up-right diagonal.

 for(int y=(int)getPosition().y+1, x=(int)getPosition().x+1; y<board.length

&& x<board[(int)getPosition().y].length; y++, x++) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //Otherwise next iteration.

 }

 //Up-left diagonal.

 for(int y=(int)getPosition().y+1, x=(int)getPosition().x-1; y<board.length

&& x>=0; y++, x--) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //Otherwise next iteration.

 }

 //Down-right diagonal.

 for(int y=(int)getPosition().y-1, x=(int)getPosition().x+1; y>=0 &&

x<board[(int)getPosition().y].length; y--, x++) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //Otherwise next iteration.

 }

 //Down-left diagonal.

 for(int y=(int)getPosition().y-1, x=(int)getPosition().x-1; y>=0 && x>=0;

y--, x--) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //Otherwise next iteration.

 }

 //Validate positions.

 validate(board);

 }

}

40

King
package com.dylanwalsh.chessai.entities.chesspieces;

import com.badlogic.gdx.math.Vector2;

public class King extends com.dylanwalsh.chessai.entities.ChessPiece {

 //References to castle conditions in Board so that king can know when to add

castle position to its availablePositions.

 private boolean canCastleLeft;

 private boolean canCastleRight;

 private Rook castleLeftRook;

 private Rook castleRightRook;

 private Vector2 castleLeftPosition;

 private Vector2 castleRightPosition;

 //Variable to track whether this King has moved.

 private boolean moved = false;

 public King(Pieces type, int startX, int startY, Rook castleLeftRook, Rook

castleRightRook) {

 super(type, startX, startY);

 this.castleLeftRook = castleLeftRook;

 this.castleRightRook = castleRightRook;

 canCastleLeft = false;

 canCastleRight = false;

 }

 /**

 * A method that returns true if this king is in check. The method calls

isCheckingKing() of every ChessPiece

 * on the board until one returns true.

 * @param board The 2D board array.

 * @return true or false, depending on whether this king is currently in check

 */

 public boolean isInCheck(com.dylanwalsh.chessai.entities.ChessPiece[][] board)

{

 for(com.dylanwalsh.chessai.entities.ChessPiece[] row : board) {

 for(com.dylanwalsh.chessai.entities.ChessPiece piece : row) {

 if(piece != null && piece.getPiece().toString().charAt(0) !=

getPiece().toString().charAt(0) && piece.isCheckingKing()) {

 return true;

 }

 }

 }

 return false;

 }

 /**

 * This method is only called once during the initialisation of the board. It

sets the two positions this King will

 * be able to move to if a castling move were to be performed.

 * @param lx the x position if this king were to castle left.

 * @param ly the y position if this king were to castle left.

 * @param rx the x position if this king were to castle right.

 * @param ry the y position if this king were to castle right.

 */

 public void setCastlingPositions(int lx, int ly, int rx, int ry) {

 castleLeftPosition = new Vector2(lx, ly);

41

 castleRightPosition = new Vector2(rx, ry);

 }

 public boolean canCastleLeft() {

 return canCastleLeft;

 }

 public boolean canCastleRight() {

 return canCastleRight;

 }

 public Rook getCastleLeftRook() {

 return castleLeftRook;

 }

 public Rook getCastleRightRook() {

 return castleRightRook;

 }

 public Vector2 getCastleLeftPosition() {

 return castleLeftPosition;

 }

 public Vector2 getCastleRightPosition() {

 return castleRightPosition;

 }

 public void setCanCastleLeft(boolean canCastleLeft) {

 this.canCastleLeft = canCastleLeft;

 }

 public void setCanCastleRight(boolean canCastleRight) {

 this.canCastleRight = canCastleRight;

 }

 public void setMoved() {

 moved = true;

 }

 public boolean hasMoved() {

 return moved;

 }

 @Override

 public void generatePositions(com.dylanwalsh.chessai.entities.ChessPiece[][]

board) {

 //Clear availablePositions and tempPos.

 availablePositions.clear();

 tempPos.clear();

 //Add positions to tempPos (excluding current position).

 //Left column.

 for(int i=-1; i<2; i++) { tempPos.add(new Vector2(getPosition().x-1,

getPosition().y+i)); }

 //Right column.

 for(int i=-1; i<2; i++) { tempPos.add(new Vector2(getPosition().x+1,

getPosition().y+i)); }

 //Top and bottom.

 tempPos.add(new Vector2(getPosition().x, getPosition().y+1));

 tempPos.add(new Vector2(getPosition().x, getPosition().y-1));

 //Add the castling positions if possible.

 if(canCastleLeft) {

 availablePositions.add(new Vector2((int)castleLeftPosition.x,

(int)castleLeftPosition.y));

 }

 if(canCastleRight) {

 availablePositions.add(new Vector2((int)castleRightPosition.x,

(int)castleRightPosition.y));

 }

 //Validate positions.

 validate(board);

 }

}

42

Knight
package com.dylanwalsh.chessai.entities.chesspieces;

import com.badlogic.gdx.math.Vector2;

public class Knight extends com.dylanwalsh.chessai.entities.ChessPiece {

 public Knight(Pieces type, int startX, int startY){

 super(type, startX, startY);

 }

 @Override

 public void generatePositions(com.dylanwalsh.chessai.entities.ChessPiece[][]

board) {

 //Clear availablePositions and tempPos.

 availablePositions.clear();

 tempPos.clear();

 //Add positions to tempPos (excluding current position).

 //Right of knight.

 tempPos.add(new Vector2(getPosition().x+1, getPosition().y+2));

 tempPos.add(new Vector2(getPosition().x+1, getPosition().y-2));

 tempPos.add(new Vector2(getPosition().x+2, getPosition().y+1));

 tempPos.add(new Vector2(getPosition().x+2, getPosition().y-1));

 //Left of knight.

 tempPos.add(new Vector2(getPosition().x-1, getPosition().y+2));

 tempPos.add(new Vector2(getPosition().x-1, getPosition().y-2));

 tempPos.add(new Vector2(getPosition().x-2, getPosition().y+1));

 tempPos.add(new Vector2(getPosition().x-2, getPosition().y-1));

 //Validate positions.

 validate(board);

 }

}

Pawn
package com.dylanwalsh.chessai.entities.chesspieces;

import com.badlogic.gdx.math.Vector2;

public class Pawn extends com.dylanwalsh.chessai.entities.ChessPiece {

 public Pawn(Pieces type, int startX, int startY){

 super(type, startX, startY);

 }

 @Override

 public void generatePositions(com.dylanwalsh.chessai.entities.ChessPiece[][]

board) {

 //Clear availablePositions and tempPos.

 availablePositions.clear();

 tempPos.clear();

 //Add positions to tempPos (excluding current position).

 switch(getPiece()) {

 case BPAWN:

 tempPos.add(new Vector2(getPosition().x, getPosition().y-1));

 //Check position - determine if made first move.

 if(getPosition().y == 6) { //Index 6 - hasn't moved.

 if(board[(int)getPosition().y-1][(int)getPosition().x] == null)

 tempPos.add(new Vector2(getPosition().x, getPosition().y-

2)); //two down

43

 }

 break;

 case WPAWN:

 tempPos.add(new Vector2(getPosition().x, getPosition().y+1));

 //Check position - determine if made first move.

 if(getPosition().y == 1) { //Index 1 - hasn't moved

 if(board[(int)getPosition().y+1][(int)getPosition().x] == null)

 tempPos.add(new Vector2(getPosition().x,

getPosition().y+2)); //two up

 }

 break;

 }

 //Validate positions.

 validate(board);

 }

 public char promote(com.dylanwalsh.chessai.entities.ChessPiece[][] board, char

promoteTo) {

 //For black, 50% chance of Queen of Knight.

 if(getPiece().toString().charAt(0) == 'B' && promoteTo=='-') {

 char[] p = new char[]{'Q', 'K'};

 promoteTo = p[(int)Math.round(Math.random())];

 }

 switch(promoteTo) {

 case 'Q':

 board[(int)getPosition().y][(int)getPosition().x] = new

Queen(getPiece()==Pieces.WPAWN?Pieces.WQUEEN:Pieces.BQUEEN, (int)getPosition().x,

(int)getPosition().y);

 dispose(); //Dispose this pawn.

 break;

 case 'K':

 board[(int)getPosition().y][(int)getPosition().x] = new

Knight(getPiece()==Pieces.WPAWN?Pieces.WKNIGHT:Pieces.BKNIGHT,

(int)getPosition().x, (int)getPosition().y);

 dispose(); //Dispose this pawn.

 break;

 case 'B':

 board[(int)getPosition().y][(int)getPosition().x] = new

Bishop(getPiece()==Pieces.WPAWN?Pieces.WBISHOP:Pieces.BBISHOP,

(int)getPosition().x, (int)getPosition().y);

 dispose(); //Dispose this pawn.

 break;

 case 'R':

 board[(int)getPosition().y][(int)getPosition().x] = new

Rook(getPiece()==Pieces.WPAWN?Pieces.WROOK:Pieces.BROOK, (int)getPosition().x,

(int)getPosition().y, 'N');

 dispose(); //Dispose this pawn.

 break;

 }

 //Call generatePositions on newly added piece.

 board[(int)getPosition().y][(int)getPosition().x].generatePositions(board);

 return promoteTo;

 }

}

Queen
package com.dylanwalsh.chessai.entities.chesspieces;

import com.badlogic.gdx.math.Vector2;

public class Queen extends com.dylanwalsh.chessai.entities.ChessPiece {

 public Queen(Pieces type, int startX, int startY){

 super(type, startX, startY);

44

 }

 @Override

 public void generatePositions(com.dylanwalsh.chessai.entities.ChessPiece[][]

board) {

 //Clear availablePositions and tempPos.

 availablePositions.clear();

 tempPos.clear();

 //Add positions to tempPos (excluding current position).

 //Up.

 for(int y = (int)getPosition().y+1; y<board.length; y++) {

 tempPos.add(new Vector2(getPosition().x, y));

 if(board[y][(int)getPosition().x] != null) break; //otherwise next

iteration

 }

 //Down.

 for(int y = (int)getPosition().y-1; y>=0; y--) {

 tempPos.add(new Vector2(getPosition().x, y));

 if(board[y][(int)getPosition().x] != null) break; //otherwise next

iteration

 }

 //Right.

 for(int x = (int)getPosition().x+1; x<board[(int)getPosition().y].length;

x++) {

 tempPos.add(new Vector2(x, getPosition().y));

 if(board[(int)getPosition().y][x] != null) break; //otherwise next

iteration

 }

 //Left.

 for(int x = (int)getPosition().x-1; x>=0; x--) {

 tempPos.add(new Vector2(x, getPosition().y));

 if(board[(int)getPosition().y][x] != null) break; //otherwise next

iteration

 }

 //Up-right diagonal.

 for(int y=(int)getPosition().y+1, x=(int)getPosition().x+1; y<board.length

&& x<board[(int)getPosition().y].length; y++, x++) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //otherwise next iteration

 }

 //Up-left diagonal.

 for(int y=(int)getPosition().y+1, x=(int)getPosition().x-1; y<board.length

&& x>=0; y++, x--) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //otherwise next iteration

 }

 //Down-right.

 for(int y=(int)getPosition().y-1, x=(int)getPosition().x+1; y>=0 &&

x<board[(int)getPosition().y].length; y--, x++) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //otherwise next iteration

 }

 //Down-left.

 for(int y=(int)getPosition().y-1, x=(int)getPosition().x-1; y>=0 && x>=0;

y--, x--) {

 tempPos.add(new Vector2(x, y));

 if(board[y][x] != null) break; //otherwise next iteration

 }

 //Validate positions.

 validate(board);

 }

}

45

Rook
package com.dylanwalsh.chessai.entities.chesspieces;

import com.badlogic.gdx.math.Vector2;

public class Rook extends com.dylanwalsh.chessai.entities.ChessPiece {

 private Vector2 castlePosition;

 //Left or right rook?

 private char rookType; //Left or right -> 'L', 'R', for pawns promoting to new

rook -> 'N' (this could be any value).

 //Variable to track whether this Rook has moved.

 private boolean moved = false;

 public Rook(Pieces type, int startX, int startY, char rookType){

 super(type, startX, startY);

 this.rookType = rookType;

 }

 /**

 * This method is only called once during the initialisation of the board. It

sets the position this Rook will be able to move

 * to if a castling move were to be performed.

 * @param x the x position if this rook were to castle.

 * @param y the y position if this king were to castle.

 */

 public void setCastlingPosition(int x, int y) {

 castlePosition = new Vector2(x, y);

 }

 public char getType() { return rookType; }

 public void setMoved() {

 moved = true;

 }

 public boolean hasMoved() {

 return moved;

 }

 public Vector2 getCastlePosition() {

 return castlePosition;

 }

 @Override

 public void generatePositions(com.dylanwalsh.chessai.entities.ChessPiece[][]

board) {

 //Clear availablePositions and tempPos.

 availablePositions.clear();

 tempPos.clear();

 //Add positions to tempPos (excluding current position).

 //Up.

 for(int y = (int)getPosition().y+1; y<board.length; y++) {

 tempPos.add(new Vector2(getPosition().x, y));

 if(board[y][(int)getPosition().x] != null) break; //otherwise next

iteration

 }

 //Down.

 for(int y = (int)getPosition().y-1; y>=0; y--) {

 tempPos.add(new Vector2(getPosition().x, y));

 if(board[y][(int)getPosition().x] != null) break; //otherwise next

iteration

 }

 //Right.

 for(int x = (int)getPosition().x+1; x<board[(int)getPosition().y].length;

x++) {

 tempPos.add(new Vector2(x, getPosition().y));

 if(board[(int)getPosition().y][x] != null) break; //otherwise next

iteration

 }

 //Left.

 for(int x = (int)getPosition().x-1; x>=0; x--) {

 tempPos.add(new Vector2(x, getPosition().y));

46

 if(board[(int)getPosition().y][x] != null) break; //otherwise next

iteration

 }

 //Validate positions.

 validate(board);

 }

}

ChessPiece
package com.dylanwalsh.chessai.entities;

import com.badlogic.gdx.graphics.Texture;

import com.badlogic.gdx.math.Vector2;

import com.badlogic.gdx.utils.Disposable;

import com.dylanwalsh.chessai.entities.chesspieces.King;

import com.dylanwalsh.chessai.entities.chesspieces.Pawn;

import com.dylanwalsh.chessai.input.GameInput;

import com.dylanwalsh.chessai.screens.HUD;

import com.dylanwalsh.chessai.util.PieceMovements;

import java.util.ArrayList;

/**

 * This is an abstract class containing all functionality for a chess piece. Piece

specific functionality is implemented in child

 * classes inheriting from ChessPiece. This class implements Disposable so that it

can dispose chess piece textures.

 */

public abstract class ChessPiece implements Disposable{

 /**

 * This is a enum storing all different types of pieces. Every child class of

ChessPiece must call the ChessPiece

 * constructor to initialize the piece value, using one of these enum values.

 */

 public enum Pieces { //Implicitly static.

 WBISHOP, WKING, WKNIGHT, WPAWN, WQUEEN, WROOK,

 BBISHOP, BKING, BKNIGHT, BPAWN, BQUEEN, BROOK

 }

 private final Pieces piece;

 private Vector2 position;

 //Temporary positions added to in generatePositions, validate() method checks

if these positions are valid

 //and then adds to availablePositions.

 protected ArrayList<Vector2> tempPos;

 //Positions that this piece can move to. Will not include current position.

 protected ArrayList<Vector2> availablePositions;

 //Contains list of potential takes for this piece.

 private ArrayList<Vector2> potentialTakes;

 private final Texture pieceTexture;

 private boolean checkingKing;

 /**

 * The ChessPiece constructor, a call to super from the child constructor

initializes the chess piece's type, and start position

 * and assigns the piece the appropriate texture.

 * @param piece the type of piece.

 * @param startX the starting x value of this piece.

 * @param startY the starting y value of this piece.

 */

 public ChessPiece(Pieces piece, int startX, int startY) {

 this.piece = piece;

 position = new Vector2().set(startX, startY);

 tempPos = new ArrayList<Vector2>();

47

 availablePositions = new ArrayList<Vector2>();

 potentialTakes = new ArrayList<Vector2>();

 checkingKing = false;

 switch(piece) {

 case BBISHOP:

 pieceTexture = new Texture("chess_pieces/bbishop.png");

 break;

 case WBISHOP:

 pieceTexture = new Texture("chess_pieces/wbishop.png");

 break;

 case BKING:

 pieceTexture = new Texture("chess_pieces/bking.png");

 break;

 case WKING:

 pieceTexture = new Texture("chess_pieces/wking.png");

 break;

 case BKNIGHT:

 pieceTexture = new Texture("chess_pieces/bknight.png");

 break;

 case WKNIGHT:

 pieceTexture = new Texture("chess_pieces/wknight.png");

 break;

 case BQUEEN:

 pieceTexture = new Texture("chess_pieces/bqueen.png");

 break;

 case WQUEEN:

 pieceTexture = new Texture("chess_pieces/wqueen.png");

 break;

 case BROOK:

 pieceTexture = new Texture("chess_pieces/brook.png");

 break;

 case WROOK:

 pieceTexture = new Texture("chess_pieces/wrook.png");

 break;

 case BPAWN:

 pieceTexture = new Texture("chess_pieces/bpawn.png");

 break;

 case WPAWN:

 default:

 pieceTexture = new Texture("chess_pieces/wpawn.png");

 break;

 }

 }

 /**

 * @return the piece texture.

 */

 public Texture getPieceTexture() {

 return pieceTexture;

 }

 /**

 *

 * @param posX

 * @param posY

 * @param board

 * @param hud

 * @param in

 * @param promotePawn The piece this pawn will be promoted to if it is known

(this is a loaded game). Otherwise '-'.

 * @return

 */

 public boolean moveTo(int posX, int posY, ChessPiece[][] board, HUD hud,

GameInput in, char promotePawn) {

 //Look over all the available positions for this chess piece. Here I look

over each item in the list and compare it to

 //the posX, posY position passed into this method.

 for (Vector2 pos : availablePositions) {

48

 if (pos.x == posX && pos.y == posY) {

 //Valid move.

 PieceMovements.move(board, this, posX, posY);

 if (getFriendlyKing(board).isInCheck(board)) {

 PieceMovements.undo();

 return false;

 }

 //Record last game move.

 PieceMovements.recordLastMove();

 //Check if pawn can be promoted.

 switch (getPiece()) {

 case BPAWN:

 if (posY == 0) {

 PieceMovements.promoteBlackPawn(((Pawn) this),

promotePawn);

 }

 break;

 case WPAWN:

 if (posY == 7) {

 PieceMovements.promoteWhitePawn(((Pawn) this),

promotePawn, in);

 }

 break;

 }

 return true;

 }

 }

 for (Vector2 pos : potentialTakes) {

 if (pos.x == posX && pos.y == posY) {

 //Valid move.

 ChessPiece referenceToPiece = PieceMovements.move(board, this,

posX, posY);

 if (getFriendlyKing(board).isInCheck(board)) {

 PieceMovements.undo();

 return false;

 }

 //Add taken piece to hud.

 hud.addTakenPiece(referenceToPiece);

 referenceToPiece.dispose(); //Dispose the taken piece.

 //Record last game move.

 PieceMovements.recordLastMove();

 //Check if pawn can be promoted.

 switch (getPiece()) {

 case BPAWN:

 if (posY == 0)

 PieceMovements.promoteBlackPawn(((Pawn) this),

promotePawn);

 break;

 case WPAWN:

 if (posY == 7) {

 PieceMovements.promoteWhitePawn(((Pawn) this),

promotePawn, in);

 }

 break;

 }

 return true;

 }

 }

 return false;

 }

 public King getFriendlyKing(ChessPiece[][] board) {

 for(ChessPiece[] row : board) {

 for(ChessPiece piece : row) {

 if(piece != null)

 if(piece.getPiece() == Pieces.BKING || piece.getPiece() ==

Pieces.WKING) //It is a King.

49

 if(piece.getPiece().toString().charAt(0) ==

getPiece().toString().charAt(0)) {//Of the same colour.

 return (King) piece;

 }

 }

 }

 return null;

 }

 /**

 * Returns the state of the checkingKing flag.

 *

 * @return true of false, depending on whether this piece is checking the

opponent's king.

 */

 public boolean isCheckingKing() {

 return checkingKing;

 }

 /**

 * A method called automatically by validate() after every move which sets the

checkingKing flag to true or false depending

 * on whether the potentialTakes contains the opponent's king.

 */

 private void setCheckingKing(ChessPiece[][] board) {

 //PotentialTakes will only contain opponent pieces, and therefore won't

contain this sides king.

 for(Vector2 piece : potentialTakes) {

 if (board[(int) piece.y][(int) piece.x].getPiece() == Pieces.BKING ||

board[(int) piece.y][(int) piece.x].getPiece() == Pieces.WKING) {

 checkingKing = true;

 return;

 }

 }

 checkingKing = false;

 }

 /**

 * This method validates that any position added by a piece is in the range of

the board and that it doesn't already contain a piece.

 * For pieces other than the pawns, this method will validate that a piece can

be taken if it is within its move set and is of the

 * opposite colour. For the pawn pieces, this method validates that the

position a pawn can move to as part of its attacking

 * moves contains a piece and is of the opposite colour.

 *

 * An implementation of this abstract class will call it's generatePositions(),

which calls this method which in turn calls

 * setCheckingKing().

 * generatePositions() -> validate() -> setCheckingKing()

 */

 protected void validate(ChessPiece[][] board) {

 //Clear the potentialTakes array.

 potentialTakes.clear();

 //Pawns.

 if(getPiece() == Pieces.BPAWN) { //Black pawn.

 int y1 = (int)getPosition().y-1;

 int x1 = (int)getPosition().x+1;

 if(x1 < 8 && x1 >= 0 && y1 < 8 && y1 >= 0)

 if(board[y1][x1] != null)

 if(board[y1][x1].getPiece().toString().charAt(0) !=

getPiece().toString().charAt(0)) //Opposite colour.

 potentialTakes.add(new Vector2(x1, y1));

 int y2 = (int)getPosition().y-1;

 int x2 = (int)getPosition().x-1;

 if(x2 < 8 && x2 >= 0 && y2 < 8 && y2 >= 0)

 if(board[y2][x2] != null)

 if(board[y2][x2].getPiece().toString().charAt(0) !=

getPiece().toString().charAt(0)) //Opposite colour.

50

 potentialTakes.add(new Vector2(x2, y2));

 }

 if(getPiece() == Pieces.WPAWN) { //White pawn.

 int y1 = (int)getPosition().y+1;

 int x1 = (int)getPosition().x+1;

 if(x1 < 8 && x1 >= 0 && y1 < 8 && y1 >= 0)

 if(board[y1][x1] != null)

 if(board[y1][x1].getPiece().toString().charAt(0) !=

getPiece().toString().charAt(0)) //Opposite colour.

 potentialTakes.add(new Vector2(x1, y1));

 int y2 = (int)getPosition().y+1;

 int x2 = (int)getPosition().x-1;

 if(x2 < 8 && x2 >= 0 && y2 < 8 && y2 >= 0)

 if(board[y2][x2] != null)

 if(board[y2][x2].getPiece().toString().charAt(0) !=

getPiece().toString().charAt(0)) //Opposite colour.

 potentialTakes.add(new Vector2(x2, y2));

 }

 for(Vector2 pos : tempPos) {

 if(pos.x < 8 && pos.x >= 0 && pos.y < 8 && pos.y >= 0) { //They are

positions on the board.

 if(board[(int)pos.y][(int)pos.x] == null) { //There are no pieces

in this position.

 availablePositions.add(pos);

 } else { //If not null, piece can be taken if opposite colour.

 if(getPiece() != Pieces.WPAWN && getPiece() != Pieces.BPAWN) {

//Forward moves for pawn cannot take a piece.

 if (board[(int) pos.y][(int)

pos.x].getPiece().toString().charAt(0) != getPiece().toString().charAt(0)) {

 potentialTakes.add(pos);

 }

 }

 }

 }

 }

 //Check if piece is now checking the king.

 setCheckingKing(board);

 }

 /**

 * A method that retrieves all available positions and potential takes for this

piece.

 * @return an ArrayList of all moves for this piece.

 */

 public ArrayList<Vector2> getAllPotentialMoves() {

 ArrayList<Vector2> returnList = new ArrayList<Vector2>(potentialTakes);

 returnList.addAll(availablePositions);

 return returnList;

 }

 /**

 * The abstract method implemented by child classes to generate piece specific

movements.

 * @param board the 2D board array.

 */

 public abstract void generatePositions(ChessPiece[][] board);

 public Pieces getPiece() {

 return piece;

 }

 public Vector2 getPosition() {

 return position;

 }

 public void setPosition(Vector2 position) {

51

 this.position = position;

 }

 @Override

 public void dispose() {

 pieceTexture.dispose();

 }

}

com.dylanwalsh.chessai.input

GameInput
package com.dylanwalsh.chessai.input;

import com.badlogic.gdx.Input;

import com.badlogic.gdx.InputProcessor;

import com.badlogic.gdx.graphics.OrthographicCamera;

import com.badlogic.gdx.math.Vector2;

import com.badlogic.gdx.math.Vector3;

import com.dylanwalsh.chessai.entities.ChessPiece;

import com.dylanwalsh.chessai.entities.chesspieces.Pawn;

import com.dylanwalsh.chessai.screens.HUD;

import java.util.ArrayList;

/**

 * The class that deals with all game input functionality. It implements the

InputProcessor interface (InputProcessor is part of

 * LibGDX).

 */

public class GameInput implements InputProcessor {

 private int tileSize;

 private int boardSize;

 private Vector2 refHoverTile;

 private ArrayList<Vector2> refTileSelectionPositions;

 private OrthographicCamera refCam;

 private char promotePawnTo; //Q, R, B, K.

 private ChessPiece[][] refBoard;

 private boolean gameOver;

 private HUD refHud;

 public GameInput(int tileSize, int boardSize, Vector2 refHoverTile,

ArrayList<Vector2> refTileSelectionPositions, OrthographicCamera refCam,

ChessPiece[][] refBoard, HUD refHud) {

 this.tileSize = tileSize;

 this.boardSize = boardSize;

 this.refHoverTile = refHoverTile;

 this.refTileSelectionPositions = refTileSelectionPositions;

 this.refCam = refCam;

 this.refBoard = refBoard;

 this.refHud = refHud;

 promotePawnTo = 'Q'; //Assume promotion to queen.

 gameOver = false;

 }

 @Override

 public boolean keyDown(int keycode) {

 return false;

 }

 @Override

 public boolean keyUp(int keycode) {

 if(keycode == Input.Keys.Q) {

 if(promotePawnTo != 'Q') {

 promotePawnTo = 'Q';

 refHud.addGameMessage("Next pawn promotion: Queen");

 }

 }

 else if(keycode == Input.Keys.R) {

52

 if(promotePawnTo != 'R') {

 promotePawnTo = 'R';

 refHud.addGameMessage("Next pawn promotion: Rook");

 }

 }

 else if(keycode == Input.Keys.B) {

 if(promotePawnTo != 'B') {

 promotePawnTo = 'B';

 refHud.addGameMessage("Next pawn promotion: Bishop");

 }

 }

 else if(keycode == Input.Keys.K) {

 if(promotePawnTo != 'K') {

 promotePawnTo = 'K';

 refHud.addGameMessage("Next pawn promotion: Knight");

 }

 }

 return true;

 }

 public char promotePawn(Pawn pawn, char promotePawn) {

 if(promotePawn!='-')

 promotePawnTo = promotePawn;

 return pawn.promote(refBoard, promotePawnTo);

 }

 @Override

 public boolean keyTyped(char character) {

 return false;

 }

 @Override

 public boolean touchDown(int screenX, int screenY, int pointer, int button) {

 return false;

 }

 @Override

 public boolean touchUp(int screenX, int screenY, int pointer, int button) {

 if(!gameOver) {

 Vector3 worldMouseCoords = refCam.unproject(new Vector3(screenX,

screenY, 0));

 if(worldMouseCoords.x >= 0 && worldMouseCoords.x <= tileSize*boardSize

 && worldMouseCoords.y >= 0 && worldMouseCoords.y <=

tileSize*boardSize) {

 float xCoord = (float) Math.floor((worldMouseCoords.x / (tileSize *

boardSize)) * boardSize);

 float yCoord = (float) Math.floor((worldMouseCoords.y / (tileSize *

boardSize)) * boardSize);

 //Add the tile coordinates to tileSelectionPositions ArrayList in

Board.

 refTileSelectionPositions.add(new Vector2(xCoord, yCoord));

 }

 return true;

 } else {

 return false;

 }

 }

 @Override

 public boolean touchDragged(int screenX, int screenY, int pointer) {

 return false;

 }

53

 @Override

 public boolean mouseMoved(int screenX, int screenY) {

 if(!gameOver) {

 Vector3 worldMouseCoords = refCam.unproject(new Vector3(screenX,

screenY, 0));

 if(worldMouseCoords.x >= 0 && worldMouseCoords.x <= tileSize*boardSize

 && worldMouseCoords.y >= 0 && worldMouseCoords.y <=

tileSize*boardSize) {

 refHoverTile.x = (float) Math.floor((worldMouseCoords.x /

(tileSize*boardSize)) * boardSize);

 refHoverTile.y = (float) Math.floor((worldMouseCoords.y /

(tileSize*boardSize)) * boardSize);

 } else {

 refHoverTile.set(-1, -1);

 }

 return true;

 } else {

 return false;

 }

 }

 @Override

 public boolean scrolled(int amount) {

 return false;

 }

 public void setGameOver() {

 gameOver = true;

 }

}

com.dylanwalsh.chessai.screens

Board
package com.dylanwalsh.chessai.screens;

import com.badlogic.gdx.Gdx;

import com.badlogic.gdx.graphics.OrthographicCamera;

import com.badlogic.gdx.graphics.Texture;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;

import com.badlogic.gdx.math.Vector2;

import com.badlogic.gdx.utils.Disposable;

import com.dylanwalsh.chessai.ai.GameAI;

import com.dylanwalsh.chessai.entities.ChessPiece;

import com.dylanwalsh.chessai.entities.chesspieces.Bishop;

import com.dylanwalsh.chessai.entities.chesspieces.King;

import com.dylanwalsh.chessai.entities.chesspieces.Knight;

import com.dylanwalsh.chessai.entities.chesspieces.Pawn;

import com.dylanwalsh.chessai.entities.chesspieces.Queen;

import com.dylanwalsh.chessai.entities.chesspieces.Rook;

import com.dylanwalsh.chessai.input.GameInput;

import com.dylanwalsh.chessai.util.PieceMovements;

import java.util.ArrayList;

/**

 * The Board class encapsulates all functionality to do with the chess board. It

contains all ChessPiece objects. It implements

 * the Disposable interface so that the tiles and pieces can be disposed.

 */

public class Board implements Disposable{

 private static char turnFlag = 'W'; //W - white(player's turn), B - black(AI's

turn), E - end of game.

 private boolean gameOver;

 //Game AI.

54

 private GameAI gameAI;

 //Reference to the kings and rooks on the board.

 private King whiteKing;

 private King blackKing;

 private Rook leftWhiteRook;

 private Rook rightWhiteRook;

 private Rook leftBlackRook;

 private Rook rightBlackRook;

 //Input.

 private GameInput gameInput;

 private Vector2 hoverTile;

 //Holds x, y coordinates of selected tiles - update method checks which pieces

are in that tile.

 private ArrayList<Vector2> tileSelectionPositions;

 private SpriteBatch sb;

 private Texture[] tiles;

 private String[] boardColumns;

 private HUD hud;

 //2D board array of ChessPieces.

 //First element of a 2D array is top left, but when it is draw it is * by index

of item and LibGDX origin is at bottom left.

 private ChessPiece[][] board;

 private final int tileSize;

 private final int boardSize;

 public Board(SpriteBatch sb, OrthographicCamera refCam, HUD hud) {

 this.hud = hud;

 tileSize = 20;

 boardSize = 8;

 this.sb = sb;

 board = new ChessPiece[boardSize][boardSize]; //Empty values are null.

 //Input.

 tileSelectionPositions = new ArrayList<Vector2>(2); //0 - first selected

tile, 1 - second selected tile.

 hoverTile = new Vector2().set(-1, -1);

 gameInput = new GameInput(tileSize, boardSize, hoverTile,

tileSelectionPositions, refCam, board, hud);

 //Pieces.

 //White pieces.

 for(int i=0; i<8; i++) { //Pawns.

 board[1][i] = new Pawn(ChessPiece.Pieces.WPAWN, i, 1);

 }

 board[0][3] = new Queen(ChessPiece.Pieces.WQUEEN, 3, 0);

 board[0][2] = new Bishop(ChessPiece.Pieces.WBISHOP, 2, 0);

 board[0][5] = new Bishop(ChessPiece.Pieces.WBISHOP, 5, 0);

 board[0][0] = new Rook(ChessPiece.Pieces.WROOK, 0, 0, 'L'); //Bottom left

Rook.

 leftWhiteRook = (Rook)board[0][0];

 leftWhiteRook.setCastlingPosition(3, 0);

 board[0][7] = new Rook(ChessPiece.Pieces.WROOK, 7, 0, 'R'); //Bottom right

Rook.

 rightWhiteRook = (Rook)board[0][7];

 rightWhiteRook.setCastlingPosition(5, 0);

 board[0][4] = new King(ChessPiece.Pieces.WKING, 4, 0, leftWhiteRook,

rightWhiteRook); //White king.

 whiteKing = (King)board[0][4];

 whiteKing.setCastlingPositions(2, 0, 6, 0);

 board[0][1] = new Knight(ChessPiece.Pieces.WKNIGHT, 1, 0);

 board[0][6] = new Knight(ChessPiece.Pieces.WKNIGHT, 6, 0);

 //Black pieces.

 for(int i=0; i<8; i++) { //Pawns.

55

 board[6][i] = new Pawn(ChessPiece.Pieces.BPAWN, i, 6);

 }

 board[7][3] = new Queen(ChessPiece.Pieces.BQUEEN, 3, 7);

 board[7][2] = new Bishop(ChessPiece.Pieces.BBISHOP, 2, 7);

 board[7][5] = new Bishop(ChessPiece.Pieces.BBISHOP, 5, 7);

 board[7][0] = new Rook(ChessPiece.Pieces.BROOK, 0, 7, 'L'); //Top left

Rook.

 leftBlackRook = (Rook)board[7][0];

 leftBlackRook.setCastlingPosition(3, 7);

 board[7][7] = new Rook(ChessPiece.Pieces.BROOK, 7, 7, 'R'); //Top right

Rook.

 rightBlackRook = (Rook)board[7][7];

 rightBlackRook.setCastlingPosition(5, 7);

 board[7][4] = new King(ChessPiece.Pieces.BKING, 4, 7, leftBlackRook,

rightBlackRook); //Black king.

 blackKing = (King)board[7][4];

 blackKing.setCastlingPositions(2, 7, 6, 7);

 board[7][1] = new Knight(ChessPiece.Pieces.BKNIGHT, 1, 7);

 board[7][6] = new Knight(ChessPiece.Pieces.BKNIGHT, 6, 7);

 //Initial generation of piece positions.

 for(ChessPiece[] row : board) {

 for(ChessPiece item : row) {

 if(item != null) {

 item.generatePositions(board);

 }

 }

 }

 tiles = new Texture[5];

 tiles[0] = new Texture(Gdx.files.internal("tiles/2.png")); //Darker.

 tiles[1] = new Texture(Gdx.files.internal("tiles/1.png")); //Lighter.

 tiles[2] = new Texture(Gdx.files.internal("tiles/hover.png")); //Hover.

 tiles[3] = new Texture(Gdx.files.internal("tiles/move.png")); //Move.

 tiles[4] = new Texture(Gdx.files.internal("tiles/3.png")); //Board

background.

 boardColumns = new String[] {"A", "B", "C", "D", "E", "F", "G", "H"};

 //Game AI.

 gameAI = new GameAI();

 //Reset moves in move stack.

 PieceMovements.resetMoves();

 }

 /**

 * The main update method of the game.

 * @return a boolean value to indicate whether the game has finished yet or

not.

 */

 private boolean update() {

 switch(turnFlag) {

 case 'W':

 //Player's turn - check 1st and 2nd item in pieceSelections.

 try {

 ChessPiece piece1 =

board[(int)tileSelectionPositions.get(0).y][(int)tileSelectionPositions.get(0).x];

 //a piece has been selected. First mouse up.

 if(piece1 != null && piece1.getPiece().toString().charAt(0) ==

56

'W')

 checkAndMove(piece1, (int)tileSelectionPositions.get(1).x,

(int)tileSelectionPositions.get(1).y,'-');

 //checkAndMove will only execute on second mouse up.

 //Clear positions from tileSelectionPositions.

 if(tileSelectionPositions.size() >= 2) {

 tileSelectionPositions.clear();

 }

 } catch(IndexOutOfBoundsException e) {

 //No tile coordinates have been added to tileSelectionPositions

yet - do nothing.

 }

 break;

 case 'B':

 gameAI.calculateBestMove(board);

 checkAndMove(gameAI.getPiece(), (int)gameAI.getMove().x,

(int)gameAI.getMove().y, '-');

 break;

 }

 //Check for checkmate.

 if(isInCheckMate('W')) { //Black won

 hud.addGameMessage("Black has Won!");

 hud.setGameOver(0);

 return true;

 }

 if(isInCheckMate('B')) { //White won

 hud.addGameMessage("White has Won!");

 hud.setGameOver(1);

 return true;

 }

 return false;

 }

 /**

 * This method checks whether the given ChessPiece can be moved to the given

position(x, y) on the board. It calls moveTo on the

 * piece. If it was successful, moveTo returned true, the kings castling

conditions are set, the game moves so far are handed over

 * to the hud, the turn in changed and the user is prompted about the move made

by the AI and if they are in check.

 *

 * @param piece the ChessPiece to move

 * @param x the x-coordinate to move to

 * @param y the y-coordinate to move to

 * @param promotePawn the piece to promote the pawn to if this move is part of

the loaded game

 * @return will return true if move was successful and turnFlag changed

 */

 private boolean checkAndMove(ChessPiece piece, int x, int y, char promotePawn)

{

 //gameInput used for by PieceMovements for pawn promotion.

 if(piece != null && piece.moveTo(x, y, board, hud, gameInput, promotePawn))

{//If it can move, it would have.

 //Update board array, at this point, piece would have updated it's

position vector.

 //If it is a Rook or King, set it's moved field to true.

 if(piece.getPiece() == ChessPiece.Pieces.WROOK || piece.getPiece() ==

ChessPiece.Pieces.BROOK)

 ((Rook)piece).setMoved();

 else if(piece.getPiece() == ChessPiece.Pieces.WKING || piece.getPiece()

== ChessPiece.Pieces.BKING)

 ((King)piece).setMoved();

57

 //Check castling conditions for next turn.

 whiteKing.setCanCastleLeft(checkCastlingCondition(whiteKing,

leftWhiteRook, new Vector2(1, 0), new Vector2(2, 0), new Vector2(3, 0)));

 whiteKing.setCanCastleRight(checkCastlingCondition(whiteKing,

rightWhiteRook, new Vector2(5, 0), new Vector2(6, 0)));

 blackKing.setCanCastleLeft(checkCastlingCondition(blackKing,

leftBlackRook, new Vector2(1, 7), new Vector2(2, 7), new Vector2(3, 7)));

 blackKing.setCanCastleRight(checkCastlingCondition(blackKing,

rightBlackRook, new Vector2(5, 7), new Vector2(6, 7)));

 //Turn finished - hand turn over to opponent.

 hud.changeTurn();

 hud.setGameMoves(PieceMovements.getGameMoves()); //update those moves

 if(turnFlag=='B') {

 hud.addGameMessage("AI moved " + piece.getPiece() + " to " +

boardColumns[x] + (y+1));

 if(whiteKing.isInCheck(board)) hud.addGameMessage("Your king is in

check!");

 turnFlag = 'W';

 return true;

 }

 if(turnFlag=='W') {

 turnFlag='B';

 return true;

 }

 }

 //If not, nothing happens.

 return false;

 }

 /**

 * Runs through the moveHistory string and moves all pieces on the board

accordingly.

 * @param moveHistory the string of moves for a game.

 */

 public void setGame(String moveHistory) {

 char[] charArr = moveHistory.toCharArray();

 String nextMove = "";

 for(int i = 0; i < charArr.length; i++) {

 nextMove += charArr[i];

 if(nextMove.length()==4) {

 int previousX = Character.getNumericValue(nextMove.charAt(0));

 int previousY = Character.getNumericValue(nextMove.charAt(1));

 int newX = Character.getNumericValue(nextMove.charAt(2));

 int newY = Character.getNumericValue(nextMove.charAt(3));

 char promotion = '-';

 try{

 if(charArr[i+1] == 'Q' || charArr[i+1] == 'R' || charArr[i+1]

== 'B' || charArr[i+1] == 'K') {

 promotion = charArr[i+1];

 i++;

 }

 } catch (ArrayIndexOutOfBoundsException e) {

 //The last move made was not a promotion - do nothing.

 }

 checkAndMove(board[previousY][previousX], newX, newY, promotion);

 nextMove = "";

 }

 }

 }

 /**

58

 * This method checks whether a castling move can be performed given the King

and Rook involved and the positions in-between

 * them. In order for this method to return true, the following conditions must

be met:

 * - The King involved in the move cannot be in check (The Rook involved can

however be in check before a castling move is made).

 * - Both the King and Rook involved in the move should not have previously

moved during the game.

 * - There can be no pieces in between the Rook and King involved in the

castling move.

 * - The positions/tiles between the Rook and King cannot be checked by any

opponent piece (i.e. You cannot castle through checked positions).

 * - The King cannot move into a checked position as part of the castling move.

 */

 private boolean checkCastlingCondition(King king, Rook rook, Vector2...

inBetweenPositions) { //returns whether or not this you can castle here

 //check if rook is alive

 if(board[(int)rook.getPosition().y][(int)rook.getPosition().x] == null)

return false;

 ChessPiece b1 =

board[(int)inBetweenPositions[0].y][(int)inBetweenPositions[0].x];

 ChessPiece c1 =

board[(int)inBetweenPositions[1].y][(int)inBetweenPositions[1].x];

 ChessPiece d1 = null;

 try {

 d1 = board[(int)inBetweenPositions[2].y][(int)inBetweenPositions[2].x];

 } catch(IndexOutOfBoundsException e) {}

 if(!king.isInCheck(board)) { //King isn't in check.

 if(!king.hasMoved() && !rook.hasMoved()) { //King and Rook haven't

moved.

 if(b1 == null && c1 == null && d1 == null) { //Spaces between rook

and king are empty, if there are only two spaces, d1 will still be null.

 for (ChessPiece[] row : board){

 for (ChessPiece piece : row) {

 if (piece != null &&

piece.getPiece().toString().charAt(0) != king.getPiece().toString().charAt(0)) {

//Opposite colour to King involved.

 try {

if(piece.getAllPotentialMoves().contains(inBetweenPositions[2])) {

 //Position 3 exists and is being checked.

 return false;

 }

 //Position 3 exists and isn't being checked.

 } catch(IndexOutOfBoundsException e) {}

 //Position 3 either exists and isn't being checked

OR doesn't exist.

 if

(piece.getAllPotentialMoves().contains(inBetweenPositions[0]) ||

piece.getAllPotentialMoves().contains(inBetweenPositions[1])) {

 return false; //Cannot castle.

 }

 }

 }

 }

 return true; //Can castle.

 }

 }

 }

 return false;//Cannot castle.

 }

59

 /**

 * The main draw method of the game, renders all tiles and piece textures.

 */

 private void draw() {

 //2D board

 for(int i = 0; i < board.length; i++) {

 for(int k = 0; k < board[i].length; k++) {

 if((i%2==0 && k%2==0) || (i%2==1 && k%2==1)) {

 sb.draw(tiles[0], tileSize*k, tileSize*i, tileSize, tileSize);

//lighter

 } else {

 sb.draw(tiles[1], tileSize*k, tileSize*i, tileSize, tileSize);

//darker

 }

 //Hover tile.

 if(k == (int)hoverTile.x && i == (int)hoverTile.y) {

 sb.draw(tiles[2], tileSize*k, tileSize*i, tileSize, tileSize);

 }

 //Selection tiles.

 for(Vector2 tilePos : tileSelectionPositions) {

 if(k == (int)tilePos.x && i == (int)tilePos.y) {

 sb.draw(tiles[3], tileSize*k, tileSize*i, tileSize,

tileSize);

 }

 }

 }

 }

 //Area around board.

 for(int i = 0; i < board.length; i++) { //Rows.

 sb.draw(tiles[4], -tileSize/2, tileSize*i, tileSize/2, tileSize);

 sb.draw(tiles[4], tileSize*8, tileSize*i, tileSize/2, tileSize);

 }

 for(int k = 0; k < board[0].length; k++) { //Columns.

 sb.draw(tiles[4], tileSize*k, -tileSize/2, tileSize, tileSize/2);

 sb.draw(tiles[4], tileSize*k, tileSize*8, tileSize, tileSize/2);

 }

 sb.draw(tiles[4], (-tileSize/2), (-tileSize/2), tileSize/2, tileSize/2);

 sb.draw(tiles[4], (-tileSize/2), tileSize*8, tileSize/2, tileSize/2);

 sb.draw(tiles[4], tileSize*8, tileSize*8, tileSize/2, tileSize/2);

 sb.draw(tiles[4], tileSize*8, (-tileSize/2), tileSize/2, tileSize/2);

 //Pieces.

 for(ChessPiece[] row : board) {

 for(ChessPiece item : row) {

 if(item != null) { //Only convert to pixel positions here (*tile

size).

 sb.draw(item.getPieceTexture(), item.getPosition().x *

tileSize, item.getPosition().y * tileSize,

 tileSize, tileSize);

 }

 }

 }

 }

 public boolean renderBoard() {

 //Update.

 if(!gameOver){

 gameOver = update();

 if(gameOver) gameInput.setGameOver(); //Stop dealing with input.

 }

 //Draw;

60

 draw();

 return gameOver;

 }

 private boolean isInCheckMate(char checkFor) {

 //Loop through every piece of opponent and see if all result in friendly

king checked.

 for(ChessPiece[] row : board) {

 for(ChessPiece piece : row) {

 if(piece != null &&

piece.getPiece().toString().charAt(0)==checkFor) {//Look at every enemy piece.

 for(Vector2 move : piece.getAllPotentialMoves()) { //Go through

all it's moves.

 PieceMovements.move(board, piece, (int)move.x,

(int)move.y);

 if(!piece.getFriendlyKing(board).isInCheck(board)) { //If

any one saves the king.

 PieceMovements.undo();

 return false; //Then it is not a checkmate.

 }

 PieceMovements.undo();

 }

 }

 }

 }

 return true;

 }

 /**

 * Used for InputMultiplexer in GameScreen

 * @return gameInput - the InputProcessor used for this game.

 */

 public GameInput getInput() {

 return gameInput;

 }

 @Override

 public void dispose() {

 for(Texture texture : tiles) {

 texture.dispose();

 }

 for(ChessPiece[] row : board) { //Dispose whatever is left on the board.

 for(ChessPiece item : row) {

 if(item != null)

 item.dispose();

 }

 }

 }

}

GameScreen
package com.dylanwalsh.chessai.screens;

import com.badlogic.gdx.Gdx;

import com.badlogic.gdx.InputMultiplexer;

import com.badlogic.gdx.Screen;

import com.badlogic.gdx.graphics.GL20;

import com.badlogic.gdx.graphics.OrthographicCamera;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;

import com.dylanwalsh.chessai.database.DBConnection;

/**

 * The class of the game that deals with the board and hud. This is the main screen

of the game. It implements the Screen interface

 * from the LibGDX libraries.

61

 */

public class GameScreen implements Screen {

 public static final float VIEWPORT_WIDTH = 370;

 private Board board;

 private SpriteBatch sb;

 private OrthographicCamera gameCam;

 private HUD hud;

 private InputMultiplexer input;

 private boolean changingGame = false;

 private String moveHistory = ""; //Move history for new loaded game.

 public GameScreen() {

 sb = new SpriteBatch();

 gameCam = new OrthographicCamera();

 DBConnection.initialize();

 hud = new HUD(this);

 board = new Board(sb, gameCam, hud);

 input = new InputMultiplexer();

 input.addProcessor(hud.getInput());

 input.addProcessor(board.getInput());

 Gdx.input.setInputProcessor(input);

 }

 public void setGame(String moveHistory) {

 changingGame = true;

 this.moveHistory = moveHistory;

 }

 @Override

 public void show() {}

 @Override

 public void render(float delta) {

 Gdx.gl.glClearColor(.25f, .25f, .25f, 1);

 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_BIT);

 sb.setProjectionMatrix(gameCam.combined);

 sb.begin();

 if(!changingGame) {

 board.renderBoard();

 } else { //If the game is being changed, stop calling renderBoard() or

Board class.

 board.dispose();

 input.removeProcessor(1);

 board = new Board(sb, gameCam, hud);

 input.addProcessor(board.getInput());

 board.setGame(moveHistory);

 changingGame = false;

 moveHistory = "";

 }

 sb.end();

 hud.renderHUD();

 }

 @Override

 public void resize(int width, int height) {

 //Sets gameCam to orthographic projection centered at 10px right of the

right edge of the board, height/2.

 gameCam.setToOrtho(false, VIEWPORT_WIDTH,

(float)height*(VIEWPORT_WIDTH/(float)width));

 gameCam.position.set(160+10, 160/2, 0);

 gameCam.update();

 }

 @Override

 public void pause() {}

62

 @Override

 public void resume() {}

 @Override

 public void hide() {

 dispose();

 }

 @Override

 public void dispose() {

 sb.dispose();

 board.dispose();

 hud.dispose();

 }

}

HUD
package com.dylanwalsh.chessai.screens;

import com.badlogic.gdx.Gdx;

import com.badlogic.gdx.graphics.Texture;

import com.badlogic.gdx.scenes.scene2d.InputEvent;

import com.badlogic.gdx.scenes.scene2d.InputListener;

import com.badlogic.gdx.scenes.scene2d.Stage;

import com.badlogic.gdx.scenes.scene2d.ui.Image;

import com.badlogic.gdx.scenes.scene2d.ui.Label;

import com.badlogic.gdx.scenes.scene2d.ui.ScrollPane;

import com.badlogic.gdx.scenes.scene2d.ui.Skin;

import com.badlogic.gdx.scenes.scene2d.ui.Table;

import com.badlogic.gdx.scenes.scene2d.ui.TextButton;

import com.badlogic.gdx.scenes.scene2d.ui.TextField;

import com.badlogic.gdx.scenes.scene2d.utils.ClickListener;

import com.badlogic.gdx.utils.Disposable;

import com.badlogic.gdx.utils.Queue;

import com.dylanwalsh.chessai.database.DBConnection;

import com.dylanwalsh.chessai.database.GameData;

import com.dylanwalsh.chessai.entities.ChessPiece;

import java.util.ArrayList;

import java.util.Timer;

import java.util.TimerTask;

/**

 * This class defines the on screen HUD. It is made up of table, text field, text

button and labels widgets. It implements the

 * Disposable interface so that the Stage, as well as widgets on the stage, and the

skin used to style the widgets can be disposed.

 */

public class HUD implements Disposable{

 private Stage stage;

 private Skin skin;

 private boolean gameOver;

 private Table table;

 private Table pieceTable;

 private TextField usernameField;

 private TextButton recordGameButton;

 private Table pastGamesTable;

 private TextButton loadGameButton;

 private Label timePlayedLabel;

 private Label movesLabel;

 private Label gameMessage; //Latest game message.

 //This is the game hud's messageQueue. It is an implementation of a queue that

stored string items. The addMessage() method

 //will add a new String to the message queue to be displayed on screen.

 private Queue<String> messageQueue;

 private boolean playerTurn;

 private int time;

63

 private int moves;

 private int win; //Stores whether player won, lost of hasn't finished.

 private String gameMoves; //A string of game moves, this is just a long

sequence of numbers stored as TEXT in the database.

 private GameData loadedGame = null;

 public HUD(final GameScreen gameScreen) {

 stage = new Stage();

 stage.getRoot().addCaptureListener(new InputListener() {

 public boolean touchDown (InputEvent event, float x, float y, int

pointer, int button) {

 if (!(event.getTarget() instanceof TextField))

stage.setKeyboardFocus(null);

 return false;

 }

 });

 skin = new Skin(Gdx.files.internal("hud/uiskin.json"));

 gameOver = false;

 table = new Table();

 table.setWidth((Gdx.graphics.getWidth()/2f)-80);

 table.setPosition((Gdx.graphics.getWidth()/2f)+40,

(Gdx.graphics.getHeight()/4f)*2.2f);

 timePlayedLabel = new Label("", skin, "default");

 movesLabel = new Label("Moves: 0", skin, "default");

 gameMessage = new Label("", skin, "default");

 messageQueue = new Queue<String>();

 pieceTable = new Table();

 usernameField = new TextField("", skin, "default");

 usernameField.setMessageText("Enter a Username!");

 //Set gameMoves to empty string in case a save before first move.

 gameMoves = "";

 recordGameButton = new TextButton("Record Game", skin, "default");

 //Definition of new anonymous inner class overriding clicked method to deal

with record game button being clicked.

 recordGameButton.addListener(new ClickListener() {

 private boolean clickedUsername = false;

 private boolean clickedLength = false;

 @Override

 public void clicked(InputEvent event, float x, float y) {

 //Save game data to database.

 //Only save brand new games or old games unfinished.

 if(loadedGame==null || loadedGame.getWin()==2) {

 if(loadedGame==null) {//brand new game

 if(usernameField.getText().isEmpty()) {

 if(!clickedUsername) {

 addGameMessage("Enter a Username!");

 clickedUsername = true;

 }

 return; //Make shore there is a username present.

 }

 if(usernameField.getText().length() > 20) {

 if(!clickedLength) {

 addGameMessage("Max Username Length is 20!");

 clickedLength = true;

 }

 return; //Make shore the length of username is less

than or equal to 20.

 }

 }

 //If updating a game it wont matter what usernameField is.

64

 GameData newlySavedGame =

DBConnection.saveGame(usernameField.getText(),

 time, moves, gameMoves, gameOver?win:2,

loadedGame==null?-1:loadedGame.getGameId());

 addGameMessage(loadedGame==null?"Game Saved!":"Game Updated!");

 //Click load game.

 InputEvent buttonDown = new InputEvent();

 buttonDown.setType(InputEvent.Type.touchDown);

 InputEvent buttonUp = new InputEvent();

 buttonUp.setType(InputEvent.Type.touchUp);

 loadGameButton.fire(buttonDown);

 loadGameButton.fire(buttonUp);

 if(loadedGame == null)

 loadedGame = newlySavedGame;

 usernameField.setText("");

 usernameField.setDisabled(true);

 }

 }

 });

 pastGamesTable = new Table();

 pastGamesTable.setFillParent(true);

 pastGamesTable.bottom();

 final ScrollPane scrollPane = new ScrollPane(pastGamesTable, skin,

"default");

 scrollPane.setHeight(65);

 scrollPane.setWidth((Gdx.graphics.getWidth()/2f)-80);

 scrollPane.setPosition((Gdx.graphics.getWidth()/2f)+40,

Gdx.graphics.getHeight()/14f);

 scrollPane.setScrollingDisabled(true, false);

 scrollPane.setFadeScrollBars(false);

 scrollPane.setVisible(false);

 loadGameButton = new TextButton("Load Game", skin, "default");

 //Definition of new anonymous inner class overriding clicked method to deal

with load game button being clicked.

 loadGameButton.addListener(new ClickListener() {

 @Override

 public void clicked(InputEvent event, float x, float y) {

 ArrayList<GameData> games = DBConnection.getPastGames();

 pastGamesTable.clearChildren();

 scrollPane.setVisible(true);

 //name : timestamp : score : win/loss/unfinished

 for(GameData g : games) {

 final GameData game = g; //Declared final so that click

listener inner class can access.

 String gameString =

 game.getName() + " : " +

 game.getTimeStamp().toString() + " : score -> " +

 game.getScore() + " : " +

(game.getWin()==0?"Loss":(game.getWin()==1?"Win":"Unfinished"));

 Label l = new Label(gameString, skin, "default");

 l.setFontScale(.9f, .9f);

 pastGamesTable.add(l).expandX();

 if(!(games.indexOf(game) == (games.size()-1)))

pastGamesTable.row();

 //Definition of new inner class overriding clicked method to

65

deal with GameData instance button being clicked.

 l.addListener(new ClickListener() {

 @Override

 public void clicked(InputEvent event, float x, float y) {

 loadedGame = game;

 pieceTable.clearChildren();

 time = loadedGame.getTimeSurvived();

 String s = Integer.toString(time);

 s = s.replaceAll("\\B(?=(?:..)+$)", ":");

 timePlayedLabel.setText("Time: "+s);

 messageQueue.clear();

 moves = 0;

 usernameField.setText("");

 usernameField.setDisabled(true);

 gameOver = game.getWin()==2?false:true;

 //Load the game.

 gameScreen.setGame(loadedGame.getMoveHistory());

 }

 });

 }

 }

 });

 table.add(timePlayedLabel).expandX().padBottom(5);

 table.row();

 table.add(movesLabel).expandX().padBottom(20);

 table.row();

 table.add(gameMessage).expandX().padBottom(20);

 table.row();

 table.add(pieceTable).expandX().padBottom(20);

 table.row();

 table.add(usernameField).expandX().padBottom(5);

 table.row();

 table.add(recordGameButton).expandX().padBottom(5);

 table.row();

 table.add(loadGameButton).expandX();

 stage.addActor(table);

 stage.addActor(scrollPane);

 playerTurn = true;

 time = 0;

 new Timer().scheduleAtFixedRate(new TimerTask() {

 @Override

 public void run() {

 if(playerTurn && !gameOver) {

 if(time % 100 == 59) {time += 41;}

 else {time++;}

 String s = Integer.toString(time);

 s = s.replaceAll("\\B(?=(?:..)+$)", ":");

 timePlayedLabel.setText("Time: "+s);

 }

 }

 }, 0, 1000);

 }

 public void changeTurn() {

 playerTurn = !playerTurn;

 //If false, player handed to AI, therefore player made a move.

 if(playerTurn == false) {

 moves++;

 movesLabel.setText("Moves: " + Integer.toString(moves));

 }

 }

66

 public void setGameOver(int win) {

 gameOver = true;

 this.win = win;

 }

 public void setGameMoves(String gameMoves) {

 this.gameMoves = gameMoves;

 }

 public void addTakenPiece(ChessPiece piece) {

 Texture takenPieceTexture;

 switch(piece.getPiece()) {

 case BBISHOP:

 takenPieceTexture = new Texture("chess_pieces/bbishop.png");

 break;

 case WBISHOP:

 takenPieceTexture = new Texture("chess_pieces/wbishop.png");

 break;

 case BKING:

 takenPieceTexture = new Texture("chess_pieces/bking.png");

 break;

 case WKING:

 takenPieceTexture = new Texture("chess_pieces/wking.png");

 break;

 case BKNIGHT:

 takenPieceTexture = new Texture("chess_pieces/bknight.png");

 break;

 case WKNIGHT:

 takenPieceTexture = new Texture("chess_pieces/wknight.png");

 break;

 case BQUEEN:

 takenPieceTexture = new Texture("chess_pieces/bqueen.png");

 break;

 case WQUEEN:

 takenPieceTexture = new Texture("chess_pieces/wqueen.png");

 break;

 case BROOK:

 takenPieceTexture = new Texture("chess_pieces/brook.png");

 break;

 case WROOK:

 takenPieceTexture = new Texture("chess_pieces/wrook.png");

 break;

 case BPAWN:

 takenPieceTexture = new Texture("chess_pieces/bpawn.png");

 break;

 case WPAWN:

 default:

 takenPieceTexture = new Texture("chess_pieces/wpawn.png");

 break;

 }

 Image takenPiece = new Image(takenPieceTexture);

 pieceTable.add(takenPiece).width(40).height(40);

 if((pieceTable.getChildren().size)%8==0) pieceTable.row();

 }

 public void addGameMessage(String message) {

 messageQueue.addLast(message);

 if(messageQueue.size == 4) messageQueue.removeFirst();

 String msg = "";

 for(String s : messageQueue) {

 msg += s+"\n";

 }

 msg = msg.substring(0, msg.length()-1);

 gameMessage.setText(msg);

 }

 public void renderHUD() {

 stage.act();

 stage.draw();

 }

 /**

67

 * Used for InputMultiplexer in GameScreen.

 * @return The stage, which itself is an InputProcessor.

 */

 public Stage getInput() {

 return stage;

 }

 @Override

 public void dispose() {

 stage.dispose();

 skin.dispose();

 }

}

com.dylanwalsh.chessai.util

PieceMovement
package com.dylanwalsh.chessai.util;

import com.dylanwalsh.chessai.entities.ChessPiece;

/**

 * This class represents a single piece movement, it keeps track of information

associated with moving a piece. This includes the

 * piece to move, where to move it to, where it is moving from, if there is a piece

in the position it is moving to, whether this

 * movement is part of a castling move (which would mean that it is either a rook

or king).

 */

public class PieceMovement {

 private ChessPiece piece;

 private int fromX;

 private int fromY;

 private int toX;

 private int toY;

 //If this is a rook or king castling.

 private boolean castle;

 //If there is a piece at that position, record it for later use. Will be null

if no piece is there.

 private ChessPiece pieceAtPosition;

 public PieceMovement(ChessPiece piece, int toX, int toY, ChessPiece

pieceAtPosition, boolean castle) {

 this.piece = piece;

 this.fromX = (int)piece.getPosition().x;

 this.fromY = (int)piece.getPosition().y;

 this.toX = toX;

 this.toY = toY;

 this.pieceAtPosition = pieceAtPosition;

 this.castle = castle;

 }

 public boolean isCastle() {

 return castle;

 }

 public ChessPiece getPiece() { return piece; }

 public ChessPiece getPieceAtPosition() { return pieceAtPosition; }

 public int getFromX() { return fromX; }

 public int getFromY() {

 return fromY;

 }

 public int getToX() {

 return toX;

 }

 public int getToY() {

 return toY;

 }

}

68

PieceMovements
package com.dylanwalsh.chessai.util;

import com.badlogic.gdx.math.Vector2;

import com.dylanwalsh.chessai.entities.ChessPiece;

import com.dylanwalsh.chessai.entities.chesspieces.King;

import com.dylanwalsh.chessai.entities.chesspieces.Pawn;

import com.dylanwalsh.chessai.entities.chesspieces.Rook;

import com.dylanwalsh.chessai.input.GameInput;

import java.util.Stack;

/**

 * A static class used in GameAI and ChessPiece that performs and undoes piece

movements. It makes use of a stack to track the

 * history of moved pieces.

 */

public class PieceMovements {

 //This is the piece move stack. A move is pushed onto the move stack when a new

piece is moved. The piece is removed from the

 //stack when a move is undone. Piece movements that are not undone are left in

the stack.

 private static Stack<PieceMovement> moveStack = new Stack<PieceMovement>();

 private static String moveString = "";

 private static ChessPiece[][] chessBoard;

 public static ChessPiece move(ChessPiece[][] board, ChessPiece piece, int posX,

int posY) {

 chessBoard = board;

 PieceMovement p = null;

 if(piece.getPiece() == ChessPiece.Pieces.BKING || piece.getPiece() ==

ChessPiece.Pieces.WKING) {

 King castleKing = (King)piece;

 Rook castleRook = null;

 if(castleKing.canCastleLeft() && posX ==

castleKing.getCastleLeftPosition().x && posY ==

castleKing.getCastleLeftPosition().y)

 castleRook = castleKing.getCastleLeftRook();

 else if(castleKing.canCastleRight() && posX ==

castleKing.getCastleRightPosition().x && posY ==

castleKing.getCastleRightPosition().y)

 castleRook = castleKing.getCastleRightRook();

 if(castleKing != null && castleRook != null) { //Castling move.

 //Push king and then rook onto the move stack (has to be in this

order as king is found in undo method by popping

 //off the stack the next movement after a castling rook).

 p = moveStack.push(new PieceMovement(piece, posX, posY,

board[posY][posX], true));

 moveStack.push(new PieceMovement(castleRook,

(int)castleRook.getCastlePosition().x, (int)castleRook.getCastlePosition().y,

board[posY][posX], true));

 //Set both positions to null first.

board[(int)castleRook.getPosition().y][(int)castleRook.getPosition().x] = null;

board[(int)castleKing.getPosition().y][(int)castleKing.getPosition().x] = null;

 //Update rook position.

board[(int)castleRook.getCastlePosition().y][(int)castleRook.getCastlePosition().x]

= castleRook;

 castleRook.setPosition(castleRook.getCastlePosition());

69

 //Update king position.

 board[posY][posX] = castleKing;

 castleKing.setPosition(new Vector2(posX, posY));

 } else if(castleRook == null) { //Regular king movement.

 //Here the king movement is pushed onto the move stack.

 p = moveStack.push(new PieceMovement(piece, posX, posY,

board[posY][posX], false));

 board[p.getFromY()][p.getFromX()] = null; //Set previous position

to null.

 board[posY][posX] = piece; //Update new position on board array.

 piece.setPosition(new Vector2(posX, posY)); //Set piece position

vector.

 }

 } else {

 //Push a regular piece movement onto the stack.

 p = moveStack.push(new PieceMovement(piece, posX, posY,

board[posY][posX], false));

 board[p.getFromY()][p.getFromX()] = null; //Set previous position to

null

 board[posY][posX] = piece; //Update new position on board array.

 piece.setPosition(new Vector2(posX, posY)); //Set piece position

vector.

 }

 //Generate new positions for every piece.

 for(ChessPiece[] row : board) {

 for(ChessPiece pi : row) {

 if(pi != null) pi.generatePositions(board);

 }

 }

 return p.getPieceAtPosition(); //So it can get disposed if it was taken.

 }

 /**

 * Undoes the previous movement. This method calls generatePositions on every

piece after it undoes the previous movement.

 */

 public static void undo() {

 if(!moveStack.isEmpty()) {

 //Pop the next movement off the move stack.

 PieceMovement p = moveStack.pop();

 if((p.getPiece().getPiece() == ChessPiece.Pieces.WROOK ||

p.getPiece().getPiece() == ChessPiece.Pieces.BROOK) && p.isCastle() == true) {

 //The PieceMovement object after a castling rook movement has been

popped off the stack should be the movement of the

 //king in the castling move.

 PieceMovement pKing = moveStack.pop();

 chessBoard[pKing.getFromY()][pKing.getFromX()] = pKing.getPiece();

//Set previous position to piece.

 chessBoard[pKing.getToY()][pKing.getToX()] =

pKing.getPieceAtPosition(); //Will be null if no piece was at that position.

 pKing.getPiece().setPosition(new Vector2(pKing.getFromX(),

pKing.getFromY())); //Update piece position vector.

 //Rook will get reset below.

 }

 //Undo movement.

 chessBoard[p.getFromY()][p.getFromX()] = p.getPiece(); //Set previous

70

position to piece.

 chessBoard[p.getToY()][p.getToX()] = p.getPieceAtPosition(); //Will be

null if no piece was at that position.

 p.getPiece().setPosition(new Vector2(p.getFromX(), p.getFromY()));

//Update piece position vector.

 //Finish by generating all new positions for every piece.

 for(ChessPiece[] row : chessBoard) {

 for(ChessPiece piece : row) {

 if(piece != null) piece.generatePositions(chessBoard);

 }

 }

 }

 }

 /**

 * This method returns a combination of all moves made throughout the course of

the game so far in the form of a String.

 * The format for a move would be:

 * previousx previousy newx newy (promotePawn character)

 *

 * So a string that looks like 3545 would mean the piece at 6D moved to 6E

 * A string that looks like 6667Q would mean the white pawn at G7 moved to G8

and was promoted to a Queen.

 * @return a string representing the game move history so far.

 */

 public static String getGameMoves() {

 return moveString;

 }

 public static void resetMoves() { moveStack.empty(); moveString=""; }

 /**

 * Records the last game added to the move stack in the moveString.

 */

 public static void recordLastMove() {

 PieceMovement m = moveStack.lastElement();

 moveString += Integer.toString(m.getFromX()) +

Integer.toString(m.getFromY()) + Integer.toString(m.getToX()) +

Integer.toString(m.getToY());

 }

 public static void promoteWhitePawn(Pawn pawn, char promotePawn, GameInput in)

{

 char promotedPawn = in.promotePawn(pawn, promotePawn);

 moveString += promotedPawn;

 }

 public static void promoteBlackPawn(Pawn pawn, char promotePawn) {

 char promotedPawn = pawn.promote(chessBoard, promotePawn);

 moveString += promotedPawn;

 }

}

GameClass
package com.dylanwalsh.chessai;

import com.badlogic.gdx.Game;

import com.dylanwalsh.chessai.screens.GameScreen;

public class GameClass extends Game {

 @Override

 public void create () {

 setScreen(new GameScreen());

 }

 @Override

 public void render () {

 super.render();

71

 }

 @Override

 public void dispose () {

 super.dispose();

 }

}

Assets

chess_pieces

This folder just contains all the images (png files) for each chess piece for white and black.

Hud

The hud folder contains all the files I need to create my skin in libgdx. The skin in libgdx is what you

use to style widget. There are four files in this folder; 1 font file and 3 files for the uiskin.

default.fnt is the font file.

uiskin.atlas, uiskin.json and uiskin.png contain information about styling the ui widgets.

tiles

The tiles folder contains 5 images. The hover to is draw when the mouse is hovered over a particular

tile. The move tile is drawn when a piece is selected. 1, 2 and 3 are the tiles used to render the game

board.

72

System Testing

Test Tables

Piece Functionality Tests

Here I conduct tests for the functionality of each piece. This involves checking that the program

follows the official rules of chess (piece’s can only make legal moves, pawn promotion works

properly, all castling conditions must be met before a castling move can be performed, etc.).

Test
Numb
er

Description Input Data Expected Outcome/Output
Data

Actual
Outcome/Out
put Data

Referenc
e

1 Successfully
render all
tiles on the
board.

ChessPiece[][]
board – 2D
board array
representing
the game
board

8x8 grid of tiles rendered on
screen

As expected 1.1

2 Successfully
place white
pawn on
board (add
Pawn
object to
2D board
array).

Index within
board to add
piece (x: 0, y:
1) - integers

White Pawn object added to
board array at position (0, 1)

As expected –
board
contains 1
initialised
ChessPiece
object

3 Successfully
place all
other white
and black
pieces on
the board.

Appropriate
index within
board to place
each piece -
integers

All ChessPiece objects added
to board array at
appropriate positions

As expected –
board
contains 32
initialised
ChessPiece
objects

4 Successfully
render
chess
pieces on
the board.

ChessPiece[][]
board – 2D
board array
representing
the game
board

Contents of board array
should be rendered on
screen

As expected 1.2

5 Check
outcome of
placing a

Index within
board to add
piece, outside

java.lang.ArrayIndexOutOfB
oundsException thrown

As expected 1.3

73

ChessPiece
object
outside the
range of
the board.

board (x: -1, y:
-1) - integers

The structure I followed when testing which position each piece can move to is as follows:
(1) – Enter a position within a piece’s official move set.
(2) – Enter a position outside a piece’s official move set.
(3) – Enter a position within a piece’s official move set where the position is already occupied

by another piece.
(4) – Enter a position within a piece’s official move set where the position is restricted by

another piece.
(5) – Special cases

6 Check move
set of Pawn
– (1)

Pawn position
is (x: 0, y: 1),
data entered
is (x:0, y:2) -
integers

Pawn moved forward one
place

As expected 1.4

7 Check move
set of Pawn
– (2)

Pawn position
is (x: 0, y: 1),
data entered
is (x: 1, y: 1) -
integers

No changes in the state of
the board

As expected

8 Check move
set of Pawn
– (3) – Not
attacking
move

Pawn position
is (x: 3, y: 3),
data entered
is (x: 3, y: 4) -
integers

No changes in the state of
the board

As expected 1.5

9 Check move
set of Pawn
– (5) – First
move
forward
two
positions

Pawn position
is (x: 0, y: 1),
data entered
is (x: 0, y: 3) –
integers

Pawn moved forward two
places

As expected 1.6

10 Check move
set of
Queen – (4)

Queen
position is (x:
2, y: 2), data
entered is (x:
7, y: 7) –
integers

No changes in the state of
the board

As expected 1.7

11 Check move
set of
Knight – (1)

Knight
position is (x:
1, y: 0), data
entered is (x:
2, y: 2) -
integers

Knight moved up 2, right 1 As expected 1.8

12 Check move
set of Rook
– (3) –

Rook position
is (x: 3, y: 4),
data entered

Rook took Bishop
ChessPiece at position on
the board

As expected 1.9

74

Attacking
move

is (x: 6, y: 4) -
integers

13 Check move
set of Pawn
– (5) –
Pawn
promotion

Pawn position
is (x: 6, y: 6),
data entered
is (x: 7, y: 7) –
integers. Also
entered ‘1’ for
Rook (see
screenshot)

Pawn promoted to Rook As expected 2.0

14 Special
move
involving
King and
Rook –
Castling. All
conditions
met.

King position
is (x: 4, y: 0),
data entered
is (x: 6, y: 0).

No castle move was
performed.

Castle
movement
should be
performed.
NullPointerEx
ception
occurred,
issue was
fixed and
then castle
move was
performed
properly.

2.1

15 Special
move
involving
King and
Rook –
Castling.
Cannot
castle
through
checked
positions
and king
cannot
move into
checked
position.

King castle to
x: 2, y: 0.

Castle move is not
performed.

As expected. 2.2

16 Special
move
involving
King and
Rook –
Castling.
King cannot
be in check.

King castle to
x: 2, y: 0.

Castle move is not
performed.

As expected. 2.3

17 Special
move
involving
King and

Moved King 1
place and then
moved king
back and

Castle move is performed. Expected no
move to be
performed. I
did not set

75

Rook –
Castling.
Both the
king and
rook
involved
should not
have
moved
during the
game.

attempted a
castle move.
Repeated for
rook.
King castle to
x: 2, y: 0

the moved
flag for king
or rook.
Castle move is
now not
performed.

18 Special
move
involving
King and
Rook –
Castling.
There can
be no
pieces
between
the rook
and king.

King castle to
x: 2, y: 0

Castle move not performed. As expected. 2.4

Other Tests

Test
Numb
er

Description Input Data Expected
Outcome/Output Data

Actual
Outcome/Outpu
t Data

Referenc
e

In order to test the minimax algorithm along with it’s alpha beta improvement, I chose to record
the number of positions evaluated as well as the execution time of both methods in order to
compare the two. This way, I could see that the alpha-beta improvement executed faster and
evaluated less nodes (meaning there was an improvement). For the minimax algorithm, I also
recorded the evaluation made at the leaf nodes by the algorithm for one move at search depths 2
and 3. This way I could see that the algorithm was recursive, and that it was evaluating a greater
number of nodes with a greater depth.

19 Minimax
algorithm –
more nodes
are
evaluated
at a greater
depth (for
one move).

Moved a
single piece on
the board for
search depth
2, repeated for
search depth
3.

More positions were
evaluated at a search
depth of 3.

Expected
outcome.

2.5

20 Minimax
algorithm –
Execution
time
improveme

Move a single
piece on the
board.
Checked
evaluations for

Execution time on
average would be quicker
for alpha-beta than
minimax.

There was not a
significant
improvement on
average. After
fixing an issue

2.6

76

nt for
alpha-beta.

the minimax
and alpha-
beta.

inside the apha-
beta method, I
repeated the
test and saw
there was a
significant
improvement in
the execution
time for alpha-
beta.

21 Game
messages
are
displayed
properly in
a queue on
screen.

Sequence of
black moves:
Black Bishop
to G4 -> Black
Bishop to D1 -
> Black Pawn
to E6.

“
AI moved BBISHOP to G4
AI moved BBISHOP to D1
AI moved BPAWN to E6
“

“
AI moved
BPAWN to E6
AI moved
BBISHOP to D1
AI moved
BBISHOP to G4
“
This was in
reverse order, I
changed to print
the string in the
opposite order
and then
repeated the
test. This
produced the
expected output

2.7

22 The time
label
increments
only on the
players
turn.

Moved piece
but made
shore the
turnFlag in
Board did not
get changed.

The time would stop
during the black player’s
turn.

As expected.

23 The moves
label
increments
only after
the player
has finished
their turn.

Moved piece. After a black piece is
moved in response to the
players first move, the
move counter should be
1, not 2.

As expected.

24 User is
prompted
about move
made by AI
to correct
location.

Moved piece
to 5, 3 to
trigger black
piece
movement
response.

Black knight moved to 0,
5 on board. Output
should be ‘AI moved
BKNIGHT to C6’.

‘AI moved
BKNIGHT to D6’.
Indexed
boardColumns
array incorrectly.
IndexOutOfBoun
dsException was
thrown for black
piece movement
to final column.

2.8

77

Fixed issue,
repeated test
and got
expected
output.

25 User is
prompted
when their
king is in
check.

Moved king to
4, 3. Black
knight moved
to 5, 5 to put
king in check.

‘Your king is in check!’
added to the bottom of
the message queue.

As expected. 2.9

26 User is
prompted
when the
opponent
has been
checkmate.

Moved Queen
to 7, 7

‘White has Won!’ As expected 3.0

27 User is
prompted
when they
have been
check mate.

Moved King to
6, 4

‘Black has Won!’ As expected 3.1

27 User is
prompted
of the next
pawn
promotion.

Pressed ‘R’ key
for pawn
promotion to
rook.

‘Next pawn promotion:
Rook’

As expected 3.2

26

Taken
pieces are
added to
the table in
the hud.

Moved pawn
to take black
pawn.

Black pawn will be added
to piece table.

A new black
pawn texture
was added to
the table as
expected.

3.3

27 Attempt to
move
enemy
piece.

Select enemy
bishop and
move to one
of it’s legal
moves.

Nothing happens Piece was not
moved but the
turn was
changed. Fixed
error by making
turnFlag change
only if state of
the board
changes.

28 Record
Game
button
pressed
when
server not
running.

Pressed
Record game
button.

SQLException should be
caught and handled.

As expected,
program output
‘SQLException
thrown, server
may not be
running!’.

3.4

29 Load Game
button
pressed
when

Pressed Load
game button.

SQLException should be
caught and handles.

As expected,
program output
‘SQLException
thrown, server

3.4

78

server not
running.

may not be
running!’.

30 Record
game
button
pressed
when no
username is
entered.

Press record
game button
at the start of
a new game.

Output to message queue
‘Enter a Username!’

As expected 3.5

31 Record
game
button is
pressed
when
username
exceeds 20
characters.

Entered
‘123username
321username’.

Output to message queue
‘Max Username Length is
20!’

As expected. 3.6

30 Record
game
button
pressed for
brand new
game save.

Entered valid
username and
pressed record
game.

Output to message queue
‘Game Saved!’, load game
window should display
with newly added game.

Fixed issue
where new
game was not
showing up in
the load game
pane. Expected
output after fix.

3.7

31 Record
game
button
pressed for
old game
being re
saved.

Pressed record
game button.

Output to message queue
‘Game Updated!’, Load
game window should
display with newly added
game.

As expected. 3.8

32 Record
game
button
pressed for
old finished
game.

Pressed record
game button.

Nothing happens ‘Game Saved!’
was output.
Fixed this error
so that this was
not output.

33 Special
characters
entered
into
username
textfield.

Entered into
textfield ‘
user&84;*nam
e” ‘

No error should occur Successfully
added new user
to database.

3.9

34 Attempt to
move a
piece
outside the
range of
the board.

Selected white
piece to move
outside range
of board.

Nothing should happen As expected

79

35 Texfield can
only be
modified
when new
game is
being
saved.

Attempt to
modify
textfield on
old loaded
game.

Textfield should be
disabled.

Could not enter
data into the
username field.

36 Type SQL
statement
into
textfield to
check SQL
injection
cannot
occur.

Entered into
textfield
‘SELECT *
FROM users;’

PreparedStatement
should prevent SQL
injections.

No SQLException
thrown,
username was
stored properly.

4.0

Query 1 - INSERT INTO users(name) VALUES(?);

Query 2 - INSERT INTO games(time_stamp, time_survived, score, move_history, user_id, win_loss)
VALUES((SELECT CURDATE()), ?, ?, ?, (SELECT id FROM users WHERE name = ?), ?);

Query 3 - UPDATE games SET time_stamp=(SELECT CURDATE()), time_survived=?, score=?,
move_history=?, win_loss=? WHERE id=?;

37 Check
query 1
inserts row
into users
table
properly.

Entered name
into text field
and pressed
record button.

Table should contain new
row.

As expected. 4.1

38 Check
query 2
inserts row
into games
table
properly.

Saved a new
game with
record game
button.

Table should contain new
row.

As expected. 4.2

39 Check
query 3
properly
updates
games
table.

Load old game
and then re-
save the game
after a few
moves.

Table updates row with
specified id.

All existing rows
were updated.
This was
because I forgot
to add ‘WHERE
ID=?’ into the
query. Fixed
issue and re-run,
table was now
updating
properly.

4.3

80

Screenshots

Screenshot 1.1

The rendered chessboard tiles.

Screenshot 1.2

All rendered pieces on the board.

Screenshot 1.3

java.lang.ArrayIndexOutOfBoundsException thrown when ChessPiece placed outside range of board.

81

Screenshot 1.4

Pawn moved forward one space.

Screenshot 1.5

Screenshot 1.6

82

Screenshot 1.7

Screenshot 1.8

83

Screenshot 1.9

Screenshot 2.0

84

Screenshot 2.1

Screenshot 2.2

85

Screenshot 2.3

Screenshot 2.4

Screenshot 2.7

Screenshot 2.8

86

Screenshot 2.9

87

Screenshot 3.0

Screenshot 3.1

Screenshot 3.2

88

Screenshot 3.3

Screenshot 3.4

Screenshot 3.5

89

Screenshot 3.6

Screenshot 3.7

90

Screenshot 3.8

Screenshot 3.9

Screenshot 4.0

Screenshot 4.1

Screenshot 4.2

Screenshot 4.3

91

Minimax Stats

2.5

These are the evaluations at the leaf nodes after one move (one method call) at search depths of 2

and 3.

1. Search depth 2, evaluation at leaf node: -670

2. Search depth 2, evaluation at leaf node: -695

3. Search depth 2, evaluation at leaf node: -700

4. Search depth 2, evaluation at leaf node: -695

5. Search depth 2, evaluation at leaf node: -710

6. Search depth 2, evaluation at leaf node: -715

7. Search depth 2, evaluation at leaf node: -810

8. Search depth 2, evaluation at leaf node: -820

9. Search depth 2, evaluation at leaf node: -855

10. Search depth 2, evaluation at leaf node: -850

11. Search depth 2, evaluation at leaf node: -680

12. Search depth 2, evaluation at leaf node: -680

13. Search depth 2, evaluation at leaf node: -700

14. Search depth 2, evaluation at leaf node: -725

15. Search depth 2, evaluation at leaf node: -670

16. Search depth 2, evaluation at leaf node: -665

17. Search depth 2, evaluation at leaf node: -805

18. Search depth 2, evaluation at leaf node: -735

19. Search depth 2, evaluation at leaf node: -735

20. Search depth 2, evaluation at leaf node: -805

1. Search depth 3, evaluation at leaf node: 725

2. Search depth 3, evaluation at leaf node: 655

3. Search depth 3, evaluation at leaf node: 670

4. Search depth 3, evaluation at leaf node: 725

5. Search depth 3, evaluation at leaf node: 640

6. Search depth 3, evaluation at leaf node: 730

7. Search depth 3, evaluation at leaf node: 630

8. Search depth 3, evaluation at leaf node: 655

9. Search depth 3, evaluation at leaf node: 645

10. Search depth 3, evaluation at leaf node: 635

11. Search depth 3, evaluation at leaf node: 640

12. Search depth 3, evaluation at leaf node: 665

13. Search depth 3, evaluation at leaf node: 770

14. Search depth 3, evaluation at leaf node: 805

15. Search depth 3, evaluation at leaf node: 815

92

16. Search depth 3, evaluation at leaf node: 835

17. Search depth 3, evaluation at leaf node: 610

18. Search depth 3, evaluation at leaf node: 625

19. Search depth 3, evaluation at leaf node: 645

20. Search depth 3, evaluation at leaf node: 655

21. Search depth 3, evaluation at leaf node: 640

22. Search depth 3, evaluation at leaf node: 835

23. Search depth 3, evaluation at leaf node: 750

24. Search depth 3, evaluation at leaf node: 680

25. Search depth 3, evaluation at leaf node: 695

26. Search depth 3, evaluation at leaf node: 750

27. Search depth 3, evaluation at leaf node: 665

28. Search depth 3, evaluation at leaf node: 755

29. Search depth 3, evaluation at leaf node: 655

30. Search depth 3, evaluation at leaf node: 650

31. Search depth 3, evaluation at leaf node: 670

32. Search depth 3, evaluation at leaf node: 675

33. Search depth 3, evaluation at leaf node: 665

34. Search depth 3, evaluation at leaf node: 690

35. Search depth 3, evaluation at leaf node: 795

36. Search depth 3, evaluation at leaf node: 830

37. Search depth 3, evaluation at leaf node: 840

38. Search depth 3, evaluation at leaf node: 860

39. Search depth 3, evaluation at leaf node: 635

40. Search depth 3, evaluation at leaf node: 650

41. Search depth 3, evaluation at leaf node: 670

42. Search depth 3, evaluation at leaf node: 680

43. Search depth 3, evaluation at leaf node: 665

44. Search depth 3, evaluation at leaf node: 860

45. Search depth 3, evaluation at leaf node: 745

46. Search depth 3, evaluation at leaf node: 675

47. Search depth 3, evaluation at leaf node: 690

48. Search depth 3, evaluation at leaf node: 745

49. Search depth 3, evaluation at leaf node: 660

50. Search depth 3, evaluation at leaf node: 750

51. Search depth 3, evaluation at leaf node: 650

52. Search depth 3, evaluation at leaf node: 675

53. Search depth 3, evaluation at leaf node: 665

54. Search depth 3, evaluation at leaf node: 670

55. Search depth 3, evaluation at leaf node: 660

56. Search depth 3, evaluation at leaf node: 685

57. Search depth 3, evaluation at leaf node: 790

58. Search depth 3, evaluation at leaf node: 825

59. Search depth 3, evaluation at leaf node: 835

60. Search depth 3, evaluation at leaf node: 855

61. Search depth 3, evaluation at leaf node: 630

62. Search depth 3, evaluation at leaf node: 655

93

63. Search depth 3, evaluation at leaf node: 665

64. Search depth 3, evaluation at leaf node: 670

65. Search depth 3, evaluation at leaf node: 670

66. Search depth 3, evaluation at leaf node: 855

67. Search depth 3, evaluation at leaf node: 740

68. Search depth 3, evaluation at leaf node: 670

69. Search depth 3, evaluation at leaf node: 685

70. Search depth 3, evaluation at leaf node: 740

71. Search depth 3, evaluation at leaf node: 655

72. Search depth 3, evaluation at leaf node: 745

73. Search depth 3, evaluation at leaf node: 645

74. Search depth 3, evaluation at leaf node: 635

75. Search depth 3, evaluation at leaf node: 660

76. Search depth 3, evaluation at leaf node: 635

(There were more evaluations for depth of 3, however this is enough to show for testing).

2.6

Each execution value corresponds to how long the method took to produce a best move in

milliseconds. This was repeated for 20 moves for both methods…

1. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 209

2. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 85

3. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 139

4. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 216

5. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 163

6. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 159

7. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 167

8. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 221

9. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 287

10. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 140

11. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 108

12. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 183

13. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 126

14. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 218

15. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 203

16. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 117

17. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 98

18. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 179

19. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 90

20. Execution time for MiniMax with Alpha-Beta pruning algorithm in milliseconds -> 59

1. Execution time for MiniMax algorithm in milliseconds -> 2043

94

2. Execution time for MiniMax algorithm in milliseconds -> 1003

3. Execution time for MiniMax algorithm in milliseconds -> 637

4. Execution time for MiniMax algorithm in milliseconds -> 878

5. Execution time for MiniMax algorithm in milliseconds -> 831

6. Execution time for MiniMax algorithm in milliseconds -> 1047

7. Execution time for MiniMax algorithm in milliseconds -> 1241

8. Execution time for MiniMax algorithm in milliseconds -> 824

9. Execution time for MiniMax algorithm in milliseconds -> 1450

10. Execution time for MiniMax algorithm in milliseconds -> 1728

11. Execution time for MiniMax algorithm in milliseconds -> 1911

12. Execution time for MiniMax algorithm in milliseconds -> 2546

13. Execution time for MiniMax algorithm in milliseconds -> 1704

14. Execution time for MiniMax algorithm in milliseconds -> 1692

15. Execution time for MiniMax algorithm in milliseconds -> 2224

16. Execution time for MiniMax algorithm in milliseconds -> 1865

17. Execution time for MiniMax algorithm in milliseconds -> 2797

18. Execution time for MiniMax algorithm in milliseconds -> 1827

19. Execution time for MiniMax algorithm in milliseconds -> 1619

20. Execution time for MiniMax algorithm in milliseconds -> 2142

The number of positions evaluated for both the minimax and alpha-beta after every method call for

20 moves…

1. Positions evaluated in MiniMax with Alpha-Beta pruning -> 1222

2. Positions evaluated in MiniMax with Alpha-Beta pruning -> 714

3. Positions evaluated in MiniMax with Alpha-Beta pruning -> 2847

4. Positions evaluated in MiniMax with Alpha-Beta pruning -> 1507

5. Positions evaluated in MiniMax with Alpha-Beta pruning -> 1457

6. Positions evaluated in MiniMax with Alpha-Beta pruning -> 2243

7. Positions evaluated in MiniMax with Alpha-Beta pruning -> 1552

8. Positions evaluated in MiniMax with Alpha-Beta pruning -> 2892

9. Positions evaluated in MiniMax with Alpha-Beta pruning -> 3193

10. Positions evaluated in MiniMax with Alpha-Beta pruning -> 3966

11. Positions evaluated in MiniMax with Alpha-Beta pruning -> 5491

12. Positions evaluated in MiniMax with Alpha-Beta pruning -> 2692

13. Positions evaluated in MiniMax with Alpha-Beta pruning -> 2859

14. Positions evaluated in MiniMax with Alpha-Beta pruning -> 1832

15. Positions evaluated in MiniMax with Alpha-Beta pruning -> 2438

16. Positions evaluated in MiniMax with Alpha-Beta pruning -> 4116

17. Positions evaluated in MiniMax with Alpha-Beta pruning -> 464

18. Positions evaluated in MiniMax with Alpha-Beta pruning -> 758

19. Positions evaluated in MiniMax with Alpha-Beta pruning -> 629

20. Positions evaluated in MiniMax with Alpha-Beta pruning -> 709

1. Positions evaluated in MiniMax -> 12435

2. Positions evaluated in MiniMax -> 18561

3. Positions evaluated in MiniMax -> 18273

95

4. Positions evaluated in MiniMax -> 13492

5. Positions evaluated in MiniMax -> 13688

6. Positions evaluated in MiniMax -> 14332

7. Positions evaluated in MiniMax -> 21828

8. Positions evaluated in MiniMax -> 32631

9. Positions evaluated in MiniMax -> 28215

10. Positions evaluated in MiniMax -> 7320

11. Positions evaluated in MiniMax -> 15334

12. Positions evaluated in MiniMax -> 15683

13. Positions evaluated in MiniMax -> 16634

14. Positions evaluated in MiniMax -> 12479

15. Positions evaluated in MiniMax -> 13810

16. Positions evaluated in MiniMax -> 7717

17. Positions evaluated in MiniMax -> 8039

18. Positions evaluated in MiniMax -> 5934

19. Positions evaluated in MiniMax -> 4734

20. Positions evaluated in MiniMax -> 4009

Evaluation

Overview
At the start of this project, I set out to design and build a chess game with an artificial intelligence

that the player could compete against. I have managed to achieve this and have met most of the

following criteria I set myself at the start of the project:

 The game board will have to be rendered on screen with all chess pieces in the correct place.

 The movement of each chess piece will have to abide by the official rules of chess.

 The user interacts with the board by using a mouse.

 The algorithm used to calculate the best move will be the MiniMax algorithm using alpha-

beta pruning.

 Information stored in the database will include move history and the player high score

(number of moves taken to check mate the AI).

 There will be functionality to play back a previously saved game.

 Along with the board, information on the time elapsed since the start of the game and

captured pieces will be displayed on screen.

 The game will allow both the player and AI to perform a castling move.

 The game will allow both the player and AI to perform a pawn en-passant move.

I began by starting out with a set of objectives for myself, identifying what the program will do,

should do, could do and wouldn’t do. Throughout the course of this project, I have managed to meet

most of these objectives. Because of that, I would consider this project a success. The following table

shows all of these objectives and explains whether I met them and how I met them.

Objective Met? How? / Comment /
Improvement

When the program is first run,
it must render a chess board

Yes. I placed a set of chess piece
objects (ChessPiece object) in

96

on screen along with all the
chess pieces in the correct
place.

an 8x8 2D board array. This
way I could properly represent
a chessboard with occupied
and empty positions. I then
used a set of chess piece
graphics and board tiles to
render a chessboard with
pieces on screen.

The program must allow the
user to move their chess
pieces on the board according
to the rules of chess.

Yes. I did this by generating a set of
available position for each
chess piece that they could
move to.

The program must calculate a
next move based upon the
current state of the board
using the MiniMax algorithm
and alpha-beta pruning.

Yes. The game calculates a best
move using the minimax
algorithm, I also found that
there was a noticable
improvement is speed of
evaluation when implementing
alpha-beta pruning for my
program.

There should be functionality
for loading previously played
games to rewatch, or
continue playing if the game
isn’t finished. This data should
be store in a database and
updated after every game.

Mostly. While I have managed to
implement game saves and
storing data about a game in a
database, I did originally have
the intent to play back old
games. All the program does
currently is display the state of
the game at the last save. An
improvement therefore could
be to build in functionality to
play back past games showing
each new game state move by
move.

There should be a load game
button on screen to load any
previous game.

Yes. I needed a way to display the
old games played in order for
the user to select a game to
continue playing.

The rule of castling should be
implemented with both the
user and AI performing the
move.

Yes. This was one of the more
difficult parts of building in the
functionality for the game.
This was due to the various
conditions that must be met in
order to castle a rook and king.

The game could implement
pawn en-passant. This move
doesn’t occur very often
within a game of chess and so
implementing it won’t be a
necessity.

No. Unfortunately, I could not
implement this functionality
within the given time frame.
An improvement I could have
made therefore would be to
implement this in the game.

97

Tiles could change colour
when selected or hovered
over.

Yes. One of the first objectives I
met was to allow the player to
see which piece is currently
selected and which tile is being
hovered over. I found it
necessary to do this as
responses I got from people
playing the game mentioned
that this would help. An
improvement I could make
would be to highlight all
available moves for a piece
currently being selected by the
player.

I could implement a main
menu system (This would be
in the form of a separate
screen).

No. Though all of the functionality
of that would have been in the
main menu system was
implemented (save game, load
game, etc), I did not manage
to implement a main menu
system. Another improvement
I could make would therefore
be to add in a main menu
system with options such as
new game, load game, view
scoreboard, etc.

The game could display data
on the side of the screen
about time elapsed for the
player, how many moves have
been made, taken pieces and
a message box to prompt the
user on the move made by
the AI, whether the king is in
check or there is a checkmate,
which piece a pawn was just
promoted to, etc.

Yes. I found that storing
information such as pieces lost
was essential. I did this by
using a table widget to lay out
the HUD.

Feedback
I have received feedback about the game from both the client as well as users of the software. There

were many different proposed improvements as well as what was liked about the software. Here I

intend to speak about all feedback that I got.

Ease of use

Most of the feedback I received about the playability and ease of use of the software was positive.

Users mentioned that I was difficult to click a button or move a piece in an incorrect way and crash

the program. The feedback I received highlighted that the controls and display was easy to

understand. An example of an improvement mentioned to me by a user was that tiles could be

highlighted for a selected piece’s available moves.

98

Criticism

There were several users who mentioned that they did not like how cluttered the screen was.

Though they understood what each widget in the HUD did, they did not like the layout. They

mentioned it would be a good idea to build a main menu system or perhaps have a drop-down menu

at the top of the screen to only show information when the user selects it.

Extensions

The client spoke about extensions to the software that could be made in the future. They said that

the game could include a multiplayer system where people could play against one another both

locally on the same machine as well as across a network.

Improvements
Because of the time constraints for my project, I was limited to how much I could implement. There

are a number of improvements or extensions I could build into the system given a few more months.

Improvement Description

Build in a multiplayer system for 2 player
functionalities.

Since my program already has the functionality
built in for checking a move is valid, this would
not be too difficult to implement, nor would it
take very long. This would improve the current
system as it would allow the player to compete
against an opponent that responds in a
different way to an AI.

Build in a multiplayer system for competing
with other players over a network.

This would be the most difficult to implement
and would require lots of time. It would go
about doing this by including a client-server
model which would connect different players
together. This would improve the system by
allowing the player to play a game with
someone who may be in a separate location on
a separate machine.

Add in functionality for allowing the AI to
learn from past games.

This would require me to use the information
about each game that I have stored in the
database. I would use this information as a
factor for determining what the best move to
make would be. This would improve the
software as it would allow the AI to slowly
become more experienced and use strategy in
a game rather than determining the best move
based on a heuristic evaluation of the board.

Add in a main menu system including new
features such as viewing a users high score
table.

At the start of my project, I wanted to
implement a stored procedure to update the
users table with their latest high score.
However, I did not get around to implementing
this as I had run out of time. An improvement
therefore would be to create a high score table
of users in a main menu system. This would not
only help users keep track of their high score
but also where there ranking would be amongst
other users. The main menu system would

99

improve the system as it would allow the user
to more easily navigate the game.

Add in the ability to change the AI difficulty
level.

Having an easy, medium and hard difficulty
would improve the current system as it would
allow users to adjust the game difficulty to
match theirs. This way, a game won’t be too
hard or too easy for any particular user.

	Analysis
	Proposed Project
	Overview of the Project
	User(s)/Client
	Project Research
	Research Table
	User Requirements
	Similar Systems Analysis
	Data Structures
	Tree
	Array
	Queue
	Stack

	The MiniMax Algorithm
	Alpha-Beta pruning

	Languages
	Java
	Python
	C#
	JavaScript
	Final choice

	LibGDX
	Relational Database Management Systems
	MySQL
	PostgreSQL
	SQLite
	Final choice

	Project Requirements
	Must
	Should
	Could
	Won’t

	Proposed Solution

	Documented Design
	Overall System Design
	Inputs, Processes, Storage and Outputs

	Design of Project Modules
	AI Package
	Class: GameAI
	Class: PieceSquareTables
	Class: RelativePieceValues

	Database Package
	Class: DBConnection
	Class: GameData

	Input Package
	Class: GameInput

	Entities Package
	Class: ChessPiece
	Entities.Chesspieces

	Screens Package
	Class: GameScreen
	Class: Board
	Class: HUD

	Utility Package
	Class: PieceMovements
	Class: PieceMovement

	Game Class

	Definition of Record Structure
	The Move Stack
	The Game Message Queue

	Validating Input
	Database Design
	Data Dictionaries
	Users Table
	Games Table

	Sample of Planned SQL Queries
	Data Definition Language
	ALTER
	UPDATE
	SELECT
	INSERT

	Program Algorithms
	The MiniMax Algorithm
	The MiniMax Algorithm with Alpha-Beta
	The Evaluation Function

	Class Definitions and Diagrams
	A Design of the User Interface

	Technical Solution
	Introduction
	com.dylanwalsh.chessai
	com.dylanwalsh.chessai.ai
	GameAI
	PieceSquareTables
	RelativePieceValues

	com.dylanwalsh.chessai.database
	DBConnection
	GameData

	com.dylanwalsh.chessai.entities
	com.dylanwalsh.chessai.entities.chesspieces
	Bishop
	King
	Knight
	Pawn
	Queen
	Rook

	ChessPiece

	com.dylanwalsh.chessai.input
	GameInput

	com.dylanwalsh.chessai.screens
	Board
	GameScreen
	HUD

	com.dylanwalsh.chessai.util
	PieceMovement
	PieceMovements

	GameClass

	Assets
	chess_pieces
	Hud
	tiles

	System Testing
	Test Tables
	Piece Functionality Tests
	Other Tests

	Screenshots
	Screenshot 1.1
	Screenshot 1.2
	Screenshot 1.3
	Screenshot 1.4
	Screenshot 1.5
	Screenshot 1.6
	Screenshot 1.7
	Screenshot 1.8
	Screenshot 1.9
	Screenshot 2.0
	Screenshot 2.1
	Screenshot 2.2
	Screenshot 2.3
	Screenshot 2.4
	Screenshot 2.7
	Screenshot 2.8
	Screenshot 2.9
	Screenshot 3.0
	Screenshot 3.1
	Screenshot 3.2
	Screenshot 3.3
	Screenshot 3.4
	Screenshot 3.5
	Screenshot 3.6
	Screenshot 3.7
	Screenshot 3.8
	Screenshot 3.9
	Screenshot 4.0
	Screenshot 4.1
	Screenshot 4.2
	Screenshot 4.3

	Minimax Stats
	2.5
	2.6

	Evaluation
	Overview
	Feedback
	Ease of use
	Criticism
	Extensions

	Improvements

